Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 420: 136122, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059019

RESUMO

Herein, a composite of polyacrylonitrile (PAN)/agar/silver nanoparticles (AgNPs) electrospun nanofibers was fabricated and applied as an efficient sorbent for thin-film micro-extraction (TFME) of five metal ions followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Incorporating agar into the nanofibers followed by in situ photo-reductive reaction under UV-lamp resulted in highly uniform dispersion of AgNPs in the nanofibers. Under the optimized conditions, agreeable linearity was acquired in the range of 0.5-250.0 ng mL-1 (R2 ≥ 0.9985). The LODs (based on S/N = 3) were attained in the range of 0.2 to 0.5 ng mL-1. The relative standard deviations (RSDs) were between 4.5% and 5.6% (intra-day, n = 5) and 5.3%-5.9% (inter-day, n = 3) for three sequential days. The developed method was investigated with water and rice samples, and recoveries (93.9-98.0%) indicated that the PAN/agar/AgNPs could be a promising film for the adsorption of heavy metal ions in varied samples.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Nanofibras , Oryza , Oligoelementos , Água/química , Prata , Nanofibras/química , Ágar , Extração em Fase Sólida , Limite de Detecção
2.
J Chromatogr A ; 1687: 463699, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36508768

RESUMO

Herein, the composite of polylactic acid (PLA)/ Iron-based metal-organic framework (r-MIL-88A)/ Cellulose electrospun nanofibers was fabricated; and then, applied as a novel sorbent for thin-film micro-extraction (TFME) of four selected pesticides followed by GC-FID analysis. From the evaluation of scanning electron microscopy, Fourier transform infrared spectroscopy energy dispersive X-ray spectroscopy and X-ray diffraction, the successful fabrication of composite nanaofibers was approved. The presence of r-MIL-88A/Cellulose with large surface area and plenty of OH-functional groups results in improving PLA extraction efficiency. The effect of various main parameters on extraction efficiency was evaluated. The LODs (based on S/N = 3) were in the range of 1.0 to 1.5 ng mL-1. Intra-day and inter-day relative standard deviations (RSDs) were in the range of 4.8% - 5.6% and 5.2%-6.4%, respectively. In addition, the fiber to fiber relative standard deviations were observed in the range of 5.2%-12.3%. By using the optimized factors, acceptable linearity ranges were obtained in the range of 3.0-1900.0 ng mL-1 for metribuzin and ethofumasate, and 5.0-2000.0 for atrazine and ametryn (R2 = 0.9913-0.9967). The developed method was investigated in fruit juice, vegetables, milk and honey samples, and recoveries (79.3-95.6%) indicate that the PLA/r-MIL-88A/Cellulose can be a prominent composite film for the extraction of the target analytes in various samples.


Assuntos
Estruturas Metalorgânicas , Nanofibras , Praguicidas , Nanofibras/química , Praguicidas/análise , Poliésteres/análise , Celulose , Limite de Detecção , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA