Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; 7(5): e0030322, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040048

RESUMO

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Assuntos
COVID-19 , Respiradores N95 , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Peróxido de Hidrogênio/farmacologia , SARS-CoV-2 , Inativação de Vírus , Descontaminação/métodos , Estudos de Viabilidade , RNA Viral , Reutilização de Equipamento
2.
mBio ; 12(2)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849974

RESUMO

Antimicrobial treatment of bacteria often results in a small population of surviving tolerant cells, or persisters, that may contribute to recurrent infection. Antibiotic persisters are metabolically dormant, but the basis of their persistence in the presence of membrane-disrupting biological compounds is less well understood. We previously found that the model plant pathogen Pseudomonas syringae pv. phaseolicola 1448A (Pph) exhibits persistence to tailocin, a membrane-disrupting biocontrol compound with potential for sustainable disease control. Here, we compared physiological traits associated with persistence to tailocin and to the antibiotic streptomycin and established that both treatments leave similar frequencies of persisters. Microscopic profiling of treated populations revealed that while tailocin rapidly permeabilizes most cells, streptomycin treatment results in a heterogeneous population in the redox and membrane permeability state. Intact cells were sorted into three fractions according to metabolic activity, as indicated by a redox-sensing reporter dye. Streptomycin persisters were cultured from the fraction associated with the lowest metabolic activity, but tailocin persisters were cultured from a fraction associated with an active metabolic signal. Cells from culturable fractions were able to infect host plants, while the nonculturable fractions were not. Tailocin and streptomycin were effective in eliminating all persisters when applied sequentially, in addition to eliminating cells in other viable states. This study identifies distinct metabolic states associated with antibiotic persistence, tailocin persistence, and loss of virulence and demonstrates that tailocin is highly effective in eliminating dormant cells.IMPORTANCE Populations of genetically identical bacteria encompass heterogeneous physiological states. The small fraction of bacteria that are dormant can help the population survive exposure to antibiotics and other stresses, potentially contributing to recurring infection cycles in animal or plant hosts. Membrane-disrupting biological control treatments are effective in killing dormant bacteria, but these treatments also leave persister-like survivors. The current work demonstrates that in Pph, persisters surviving treatment with membrane-disrupting tailocin proteins have an elevated redox state compared to that of dormant streptomycin persisters. Combination treatment was effective in killing both persister types. Culturable persisters corresponded closely with infectious cells in each treated population, whereas the high-redox and unculturable fractions were not infectious. In linking redox states to heterogeneous phenotypes of tailocin persistence, streptomycin persistence, and infection capability, this work will inform the search for mechanisms and markers for each phenotype.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/metabolismo , Estreptomicina/farmacologia , Metabolismo/efeitos dos fármacos , Oxirredução , Fenótipo , Pseudomonas syringae/crescimento & desenvolvimento
3.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483307

RESUMO

Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Estados Unidos
4.
Front Microbiol ; 12: 815911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095819

RESUMO

Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological functions including genome maintenance, antibiotics persistence, phage defense, and virulence. Eight classes of TA systems have been described, based on the mechanism of toxin neutralization by the antitoxin. Although studied well in model species of clinical significance, little is known about the TA system abundance and diversity, and their potential roles in stress tolerance and virulence of plant pathogens. In this study, we screened the genomes of 339 strains representing the genetic and lifestyle diversity of the Pseudomonas syringae species complex for TA systems. Using bioinformatic search and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we show that P. syringae strains encode 26 different families of TA systems targeting diverse cellular functions. TA systems in this species are almost exclusively type II. We predicted a median of 15 TA systems per genome, and we identified six type II TA families that are found in more than 80% of strains, while others are more sporadic. The majority of predicted TA genes are chromosomally encoded. Further functional characterization of the predicted TA systems could reveal how these widely prevalent gene modules potentially impact P. syringae ecology, virulence, and disease management practices.

5.
J Bacteriol ; 202(13)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32312747

RESUMO

Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents.


Assuntos
Bacteriocinas/farmacologia , Farmacorresistência Bacteriana , Pseudomonas/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo
6.
ISME J ; 13(9): 2319-2333, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31110262

RESUMO

High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination. A significantly higher proportion and greater lengths (>10 kb, maximum 31.5 kb) of recombined fragments were observed in subsp. morus and in strains isolated in Europe from intercepted coffee plants shipped from the Americas. Such highly recombinant strains pose a serious risk of emergence of novel variants, as genetically distinct and formerly geographically isolated genotypes are brought in close proximity by global trade. Recently recombined regions in wild-type strains included genes involved in regulation and signaling, host colonization, nutrient acquisition, and host evasion, all fundamental traits for X. fastidiosa ecology. Identification of four recombinant loci shared between wild-type and experimentally generated recombinants suggests potential hotspots of recombination in this naturally competent pathogen. These findings provide insights into evolutionary forces possibly affecting the adaptive potential to colonize the host environments of X. fastidiosa.


Assuntos
Evolução Molecular , Recombinação Homóloga , Xylella/classificação , Xylella/genética , Europa (Continente) , Variação Genética , Genótipo , Filogenia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Estados Unidos , Xylella/isolamento & purificação
7.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980551

RESUMO

Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.


Assuntos
Proteínas de Fímbrias/genética , Fímbrias Bacterianas/fisiologia , Xylella/fisiologia , Xylella/patogenicidade , Proteínas de Fímbrias/metabolismo , Técnicas de Inativação de Genes , Virulência/genética , Xylella/genética
8.
Mol Plant Microbe Interact ; 30(11): 896-905, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800709

RESUMO

MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a ß-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Xylella/fisiologia , Xylella/patogenicidade , Agregação Celular , Contagem de Colônia Microbiana , Simulação por Computador , Técnicas de Inativação de Genes , Movimento , Mutação/genética , Plâncton/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Virulência , Xylella/ultraestrutura
9.
Mol Plant Microbe Interact ; 30(7): 589-600, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28459171

RESUMO

Xylella fastidiosa, an etiological agent of emerging crop diseases around the world, is naturally competent for the uptake of DNA from the environment that is incorporated into its genome by homologous recombination. Homologous recombination between subspecies of X. fastidiosa was inferred by in silico studies and was hypothesized to cause disease emergence. However, no experimental data are available on the degree to which X. fastidiosa strains are capable of competence and whether recombination can be experimentally demonstrated between subspecies. Here, using X. fastidiosa strains from different subspecies, natural competence in 11 of 13 strains was confirmed with plasmids containing antibiotic markers flanked by homologous regions and, in three of five strains, with dead bacterial cells used as source of donor DNA. Recombination frequency differed among strains and was correlated to growth rate and twitching motility. Moreover, intersubspecific recombination occurred readily between strains of subsp. fastidiosa and multiplex, as demonstrated by movement of antibiotic resistance and green fluorescent protein from donor to recipient cells and confirmed by DNA sequencing of the flanking arms of recombinant strains. Results demonstrate that natural competence is widespread among X. fastidiosa strains and could have an impact in pathogen adaptation and disease development.


Assuntos
DNA Bacteriano/genética , Variação Genética , Recombinação Homóloga , Xylella/genética , Adaptação Fisiológica/genética , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Plasmídeos/genética , Especificidade da Espécie , Virulência/genética , Xylella/classificação , Xylella/patogenicidade
10.
Appl Environ Microbiol ; 82(17): 5269-77, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27316962

RESUMO

UNLABELLED: Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE: Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases.


Assuntos
Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/genética , Xilema/microbiologia , Ecossistema , Microfluídica , Modelos Biológicos , Recombinação Genética , Xylella/crescimento & desenvolvimento , Xylella/isolamento & purificação
11.
FEMS Microbiol Ecol ; 89(1): 149-61, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24749684

RESUMO

Standard aquaculture generates large-scale pollution and strains water resources. In aquaculture using zero discharge systems (ZDS), highly efficient fish growth and water recycling are combined. The wastewater stream is directed through compartments in which beneficial microbial activities induced by creating suitable environmental conditions remove biological and chemical pollutants, alleviating both problems. Bacterial predators, preying on bacterial populations in the ZDS, may affect their diversity, composition and functional redundancy, yet in-depth understanding of this phenomenon is lacking. The dynamics of populations belonging to the obligate predators Bdellovibrio and like organisms (BALOs) were analyzed in freshwater and saline ZDS over a 7-month period using QPCR targeting the Bdellovibrionaceae, and the Bacteriovorax and Bacteriolyticum genera in the Bacteriovoracaeae. Both families co-existed in ZDS compartments, constituting 0.13-1.4% of total Bacteria. Relative predator abundance varied according to the environmental conditions prevailing in different compartments, most notably salinity. Strikingly, the Bdellovibrionaceae, hitherto only retrieved from freshwater and soil, also populated the saline system. In addition to the detected BALOs, other potential predators were highly abundant, especially from the Myxococcales. Among the general bacterial population, Flavobacteria, Bacteroidetes, Fusobacteriaceae and unclassified Bacteria dominated a well mixed but seasonally fluctuating diverse community of up to 238 operational taxonomic units, as revealed by 16S rRNA gene sequencing.


Assuntos
Água Doce/microbiologia , Água do Mar/microbiologia , Microbiologia da Água , Animais , Aquicultura , Bacteroidetes/genética , Bdellovibrio/genética , Biodiversidade , Peixes/microbiologia , Flavobacteriaceae/genética , Fusobactérias/genética , Genes Bacterianos , Tipagem Molecular , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA