Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Commun Biol ; 6(1): 763, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524769

RESUMO

The current report describes a stepwise mechanistic pathway of NLRP3/caspase1/IL-18-regulated immune responses operational in eosinophilic esophagitis (EoE). We show that esophageal epithelial cells and macrophage-derived NLRP3 regulated IL-18 initiate the disease and induced IL-5 facilitates eosinophil growth and survival. We also found that A. fumigatus-exposed IL-18-/- mice or IL-18-neutralized mice are protected from EoE induction. Most importantly, we present that intravascular rIL-18 delivery to ΔdblGATA mice and CD2-IL-5 mice show the development of EoE characteristics feature like degranulated and intraepithelial eosinophils, basal cell hyperplasia, remodeling and fibrosis. Similarly, we show an induced NLRP3-caspase1-regulated IL-18 pathway is also operational in human EoE. Lastly, we present the evidence that inhibitors of NLRP3 and caspase-1 (MCC950, BHB, and VX-765) protect A. fumigatus- and corn-extract-induced EoE pathogenesis. In conclusion, the current study provides a new understanding by implicating NLRP3/caspase1-regulated IL-18 pathway in EoE pathogenesis. The study has the clinical significance and novel therapeutic strategy, which depletes only IL-18-responsive pathogenic eosinophils, not naïve IL-5-generated eosinophils critical for maintaining innate immunity.


Assuntos
Esofagite Eosinofílica , Humanos , Camundongos , Animais , Esofagite Eosinofílica/tratamento farmacológico , Esofagite Eosinofílica/patologia , Alérgenos/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-5/efeitos adversos , Interleucina-5/metabolismo , Interleucina-18/efeitos adversos
2.
Environ Res ; 226: 115659, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906266

RESUMO

Allium sativum (A. sativum)is well known for its therapeutic and culinary uses. Because of their high medicinal properties, the clove extract was selected to synthesize cobalt-tellurium nanoparticles. The aim of the study was to evaluate the protective activity of the nanofabricated cobalt-tellurium using A. sativum (Co-Tel-As-NPs) against H2O2-induced oxidative damage in HaCaT cells. Synthesized Co-Tel-As-NPs were analyzed using UV-Visible spectroscopy, FT-IR, EDAX, XRD, DLS, and SEM. Various concentrations of Co-Tel-As-NPs were used as a pretreatment on HaCaT cells before H2O2 was added. Then, the cell viability and mitochondrial damage were compared between pretreated and untreated control cells using an array of assays (MTT, LDH, DAPI, MMP, and TEM), and the intracellular ROS, NO, and antioxidant enzyme production were examined. In the present research, Co-Tel-As-NPs at different concentrations (0.5, 1.0, 2.0, and 4.0µg/mL) were tested for toxicity using HaCaT cells. Furthermore, the effect of H2O2 on the viability of HaCaT cells was evaluated using the MTT assay for Co-Tel-As-NPs. Among those, Co-Tel-As-NPs at 4.0 µg/mL showed notable protection; with the same treatment, cell viability was discovered to be 91% and LDH leakage was also significantly decreased. Additionally, the measurement of mitochondrial membrane potential was significantly decreased by Co-Tel-As-NPs pretreatment against H2O2. The recovery of the condensed and fragmented nuclei brought about by the action of Co-Tel-As-NPs was identified using DAPI staining. TEM examination of the HaCaT cells revealed that the Co-Tel-As-NPs had a therapeutic effect against H2O2 keratinocyte damage.


Assuntos
Antioxidantes , Alho , Humanos , Antioxidantes/metabolismo , Peróxido de Hidrogênio/toxicidade , Alho/metabolismo , Telúrio/farmacologia , Células HaCaT/metabolismo , Cobalto/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
3.
Mol Immunol ; 155: 100-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758469

RESUMO

Lung injury is the most common secondary complication of pancreatitis and pancreatic malignancy. Around 60-70% of pancreatitis-related deaths are caused by lung injury; however, there is no animal model of the inflammation-mediated progressive pulmonary pathological events that contribute to acute lung injury in chronic pancreatitis (CP). Hence, we developed an inflammation-mediated mouse model and studied the pathological events that have a critical role in promoting the pathogenesis of lung injury. Our proteomic analysis of lung tissue revealed neutrophil-associated induction of neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase enzyme, further supporting a role for neutrophils in promoting IL-18-associated lung injury. We show that neutrophils released IL-18-induced p-NF-κB along with profibrotic and oncogenic proteins like TTF1, PDX1, and SOX9 in lung tissues of a mouse model of chronic pancreatitis. We also show that neutrophil infiltration induces TGF-ß and SMAD4 and activates epithelial cells to produce other profibrotic proteins like ZO-1 and MUC2, along with the fibroblast markers FGF-1 and αSMA, that cause mesenchymal transition and accumulation of extracellular matrix collagen. Most importantly, we present evidence that IL-18 inhibition significantly alleviates CP-induced lung injury. This was further established by the finding that IL-18 gene-deficient mice showed improved lung injury by inhibition of TGF-ß and fibroblast to mesenchymal transition and reduced collagen accumulation. The present study suggests that inhibition of IL-18 may be a novel treatment for CP-associated induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Pancreatite Crônica , Camundongos , Animais , Infiltração de Neutrófilos , Interleucina-18/metabolismo , Proteômica , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Pulmão/metabolismo , Lesão Pulmonar Aguda/patologia , Inflamação/patologia , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36043738

RESUMO

AIMS: Develop a novel murine models of malignant pancreatitis. BACKGROUND: Although patients with chronic pancreatitis are at a greater risk of developing pancreatic cancer, there is no definitive mouse model that currently develops chronic pancreatitis-induced pancreatic cancer. OBJECTIVE: Characterization of eosinophilic inflammation-mediated malignant pancreatitis in novel murine model. METHODS: We developed a murine model of chronic eosinophilic inflammation associated with pancreatitis that also shows characteristic features of pancreatic malignancy. The mouse received cerulein and azoxymethane via intraperitoneal administration developed pathological malignant phenotype, as well as concomitant lung inflammation. RESULTS: We discovered pathological alterations in the pancreas that were associated with chronic pancreatitis, including a buildup of eosinophilic inflammation. Eosinophil degranulation was reported nearby in the pancreas tissue sections that show acinar-to-ductal metaplasia and acinar cell atrophy, both of which are characteristic of pancreatic malignancies. Additionally, we also observed the formation of PanIN lesions after three initial doses of AOM and eight weeks of cerulein with the AOM treatment regimen. We discovered that persistent pancreatic eosinophilic inflammation linked with a pancreatic malignant phenotype contributes to pulmonary damage. The RNA seq analysis also confirmed the induction of fibro-inflammatory and oncogenic proteins in pancreas and lung tissues. Further, in the current manuscript, we now report the stepwise kinetically time-dependent cellular inflammation, genes and proteins involved in the development of pancreatitis malignancy and associated acute lung injury by analyzing the mice of 3 AOM with 3, 8, and 12 weeks of the cerulein challenged protocol regime. CONCLUSION: We first show that sustained long-term eosinophilic inflammation induces time-dependent proinflammatory, profibrotic and malignancy-associated genes that promote pancreatic malignancy and acute lung injury in mice.


Assuntos
Neoplasias Pancreáticas , Pancreatite Crônica , Camundongos , Animais , Ceruletídeo/toxicidade , Ceruletídeo/uso terapêutico , Modelos Animais de Doenças , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/metabolismo , Inflamação/induzido quimicamente , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas
5.
Curr Hypertens Rep ; 24(12): 693-708, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322299

RESUMO

PURPOSE OF REVIEW: We highlight important new findings on cardiovascular dysfunction in intrauterine growth restriction. RECENT FINDINGS: Intrauterine growth restriction (IUGR) is a multifactorial condition which negatively impacts neonatal growth during pregnancy and is associated with health problems during the lifespan. It affects 5-15% of all pregnancies in the USA and Europe with varying percentages in developing countries. Epidemiological studies have reported that IUGR is associated with the pathogenesis of hypertension, activation of the renin-angiotensin system (RAS), disruption in placental-mTORC and TGFß signaling cascades, and endothelial dysfunction in IUGR fetuses, children, adolescents, and adults resulting in the development of cardiovascular diseases (CVD). Experimental studies are needed to investigate therapeutic measures to treat increased blood pressure (BP) and long-term CVD problems in people affected by IUGR. We outline the mechanisms mediating fetal programming of hypertension in developing CVD. We have reviewed findings from different experimental models focusing on recent studies that demonstrate CVD in IUGR.


Assuntos
Doenças Cardiovasculares , Hipertensão , Recém-Nascido , Adolescente , Criança , Adulto , Feminino , Humanos , Gravidez , Retardo do Crescimento Fetal , Placenta , Sistema Renina-Angiotensina , Doenças Cardiovasculares/etiologia
6.
Am J Physiol Gastrointest Liver Physiol ; 323(1): G31-G43, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35437997

RESUMO

This paper aims to investigate the molecules involved in development of Barrett's esophagus (BE) in human eosinophilic esophagitis (EoE). Histopathological, immunohistochemical, real-time PCR Immuno blot, and ELISA analyses are performed to identify the signature genes and proteins involved in the progression of BE in EoE. We detected characteristic features of BE like intermediate columnar-type epithelial cells, induced BE signature genes like ErbB3, CDX1, ErbB2IP in the esophageal mucosa of patients with EoE. In addition, we had observed several BE-associated proteins such as TFF3, p53 and the progression markers like EGFR, p16, MICA, MICB, and MHC molecules in esophageal biopsies of patients with chronic EoE. Interestingly, we also detected mucin-producing columnar cells and MUC-2, MUC-4, and MUC5AC genes and proteins along with induced IL-9 in patients with chronic EoE. A strong correlation of IL-9 with mucin genes is observed that implicated a possible role for IL-9 in the transformation of esophageal squamous epithelial cells to columnar epithelial cells in patients with EoE. These findings indicate that IL-9 may have an important role in BE development in patients with chronic EoE. We also discovered that IL-9 stimulates mucin-producing and barrier cell transcripts and proteins such CK8/18, GATA4, SOX9, TFF1, MUC5AC, and tight junction proteins in primary esophageal epithelial cells when exposed to IL-9. Taken together, these findings provide evidence that indeed IL-9 has a role in the initiation and progression of BE characteristics like development of mucin-producing columnar epithelial cells in patients with chronic EoE.NEW & NOTEWORTHY Intermediate columnar-type epithelial cells are observed in biopsies of patients with EoE. Induced BE signature genes (CK8/18, CDX1 GATA4, SOX9, and Occludin) were observed in patients with chronic EoE. Induction of IL-9 and its correlation with eosinophils mucin-producing genes and proteins was observed in patients with EoE. Induced IL-9 may be responsible for the development of BE in patients with chronic EoE.


Assuntos
Esôfago de Barrett , Esofagite Eosinofílica , Esôfago de Barrett/patologia , Esofagite Eosinofílica/patologia , Humanos , Interleucina-9/genética , Mucinas , Fenótipo
7.
Allergy ; 77(4): 1165-1179, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34800294

RESUMO

BACKGROUND: IL-5-dependent residential and IL-18-transformed pathogenic eosinophils have been reported; however, the role of IL-18-transformed CD274-expressing pathogenic eosinophils compared to IL-5-generated eosinophils in promoting airway obstruction in asthma has not yet been examined. METHODS: Eosinophils are detected by tissue anti-MBP and anti-EPX immunostaining, CD274 expression by flow cytometry, and airway resistance using the Buxco FinePointe RC system. RESULTS: We show that A. fumigatus-challenged wild-type mice, and different gene-deficient mice including naïve CC10-IL-18-transgenic mice, accumulate mostly peribronchial and perivascular CD274-expressing eosinophils except naïve CD2-IL-5-transgenic mice. Additionally, we show that CD2-IL-5 transgenic mice following rIL-18 treatment accumulate high number of CD274-expressing perivascular and peribronchial eosinophils with induced collagen, goblet cell hyperplasia and airway resistance compared to saline-challenged CD2-IL5 transgenic mice. Furthermore, we also show that even A. fumigatus-challenged IL-5 -/- mice and rIL-18 given ΔdblGATA mice accumulate CD274-expressing eosinophil-associated asthma pathogenesis including airway obstruction. Most importantly, we provide evidence that neutralization of CD274 and IL-18 in A. fumigatus-challenged mice ameliorate experimental asthma. Taken together, the data presented are clinically significant in establishing that anti-IL-18 neutralization is a novel immunotherapy to restrict asthma pathogenesis. CONCLUSIONS: We demonstrate that IL-18 is critical for inducing asthma pathogenesis, and neutralization of CD274 is a potential immunotherapeutic strategy for asthma.


Assuntos
Obstrução das Vias Respiratórias , Asma , Obstrução das Vias Respiratórias/etiologia , Obstrução das Vias Respiratórias/patologia , Animais , Asma/metabolismo , Antígeno B7-H1/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Eosinófilos/metabolismo , Humanos , Interleucina-18/metabolismo , Interleucina-5/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
8.
Int J Cell Biol Physiol ; 4(1-2): 1-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790972

RESUMO

Many aspects of the SARS-CoV-2 virus remain poorly understood, including its rapid mutation and its effects on populations of different ages. The present literature of review is focused on the effectiveness of current available vaccines in view of immerging several SARS-CoV-2 variants. The most dangerous and infectious SARS-CoV-2 strain, B117, was recently discovered in the United Kingdom, and another new variant, 501.V2, was discovered in South Africa. In countries such as the United States, Japan, India, and Brazil, the variant B117 spread far more quickly than the original strain. The new SARS-CoV-2 mutations have made producing a universal and effective vaccine more difficult. SARS-CoV-2's S protein, which aids in receptor identification and membrane fusion, is a primary target for vaccine development using its mRNA or inactivated virus. Currently, in the interval of few days new more infectious SARS-CoV-2 mutant is detected, started from SARS-CoV-2 Alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), delta plus, gamma (P.1) and now variant lamda. The variant detected first in Peru and spread almost 27 countries including UK that accounts for 82% of new infections. These mutant variants are posing new challenge even to the fully vaccinated individuals and a challenge for the public health. Thus, a need to review current treatment vaccination guideline and strategy as early as possible. Reporting all new SARS-CoV-2 variants and their effectiveness in response to several available vaccines, we would like to draw the attention of health care provider, and all developed countries health care agencies including WHO to frame new guidelines for vaccination and immediate intervention to control the development of new SARS-CoV-2 variants from the third world countries by providing vaccines to the poor countries as early as possible.

9.
Int J Basic Clin Immunol ; 4(1-2): 1-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557864

RESUMO

We recently rereported that blood mRNA levels of T cells and IgE receptors are the novel non-invasive biomarkers for eosinophilic esophagitis (EoE) with the aim to establish the panel of T cells and IgE receptor as the novel non-invasive biomarkers for EoE. In addition to earlier proposed cell surface molecules, we now added T cell receptor CXCR6 and eosinophils expressed cell surface molecules CD101 and CD274 mRNA levels. The mRNA levels of eosinophils cell surface molecule CD101 and CD274 and T cell receptor CXCR6, Vß11, CD1d and chemokine CXCL16 levels were examined using the blood of normal, EoE and GERD patients. The analysis showed statistically significant induced mRNA levels of CD274, CD101 and reduced CXCR6 will be an additional molecule with respective 95%, 90% and 90% positive predictive value in between EoE and GERD patients. In brief, these additional data will be critical to establish a complete panel of earlier published TCRδ (95%), Jα18 (83%) and FCεRII (100%) non-invasive biomarker to monitor the EoE severity and treatment effect in EoE patients. In conclusion, we now propose both induced and reduced transcript levels of cell surface molecules of the cell surface molecules along with earlier reported molecules that will be useful for monitoring EoE status before and following treatment. Most importantly, the complete predictive non-invasive biomarker panel will also serve to differentiate EoE from GERD.

10.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183442

RESUMO

Reports indicate that accumulated macrophages in the pancreas are responsible for promoting the pathogenesis of chronic pancreatitis (CP). Recently, macrophage-secreted cytokines have been implicated in promoting pancreatic acinar-to-ductal metaplasia (ADM). This study aims to establish the role of accumulated macrophage-activated NLRP3-IL-18-eosinophil mechanistic pathway in promoting several characteristics of pancreatic malignancy in CP. We report that in a murine model of pancreatic cancer (PC), accumulated macrophages are the source of NLRP3-regulated IL-18, which promotes eosinophilic inflammation-mediated accumulation to periductal mucin and collagen, including the formation of ADM, pancreatic intraepithelial neoplasia (PanINs), and intraductal papillary mucinous neoplasm. Most importantly, we show improved malignant characteristics with reduced levels of oncogenes in an anti-IL-18 neutralized and IL-18 gene deficient murine model of CP. Last, human biopsies validated that NLRP3-IL-18-induced eosinophils accumulate near the ducts, showing PanINs formation in PC. Taken together, we present the evidence on the role of IL-18-induced eosinophilia in the development of PC phenotype like ADM, PanINs, and ductal cell differentiation in inflammation-induced CP.


Assuntos
Azoximetano/efeitos adversos , Ceruletídeo/efeitos adversos , Eosinófilos/imunologia , Interleucina-18/metabolismo , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Humanos , Masculino , Camundongos , Mucinas/metabolismo , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/imunologia , Fenótipo , Proteômica , Transdução de Sinais
11.
Life Sci ; 278: 119640, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048812

RESUMO

Patients with chronic pancreatitis have an increased risk of pancreatic malignancy, but the mechanisms underlying this relationship are poorly understood. We developed a mouse model of chronic pancreatitis by treatment with a combination of cerulein and azoxymethane. In our model, we show that cerulein and azoxymethane treated mice develop pathological malignant phenotype and associated lung inflammation. We observed chronic pancreatitis-associated induction of proinflammatory cytokines such as interleukin-6, interleukin-15, and granulocyte-macrophage colony-stimulating factor, along with accumulation of macrophages and eosinophilic inflammation. We also observed eosinophils degranulation, pancreatic stellate cell activation-mediated epithelial-to-mesenchymal transition-associated proteins that display a pancreatic malignant phenotype including acinar-to-ductal metaplasia and acinar cell atrophy. We observed highly induced interleukin-15 that has been earlier reported to have a protective role against fibrosis and malignancy; therefore, further evaluated its role in our mouse model of chronic pancreatitis. We observed that introduction of recombinant interleukin-15 has indeed improve chronic pancreatitis-associated epithelial-to-mesenchymal transition-mediated development of a malignant phenotype in the mouse model of chronic pancreatitis. In conclusion, we present evidence that rIL-15 overexpression improves eosinophilic inflammation-induced epithelial-to-mesenchymal transition-mediated progression of pancreatic remodeling associated malignant phenotype and acute lung injury by inducing NKT cells and IFN-γ mediated innate immunity in experimental pancreatitis.


Assuntos
Transição Epitelial-Mesenquimal , Inflamação/complicações , Lesão Pulmonar/etiologia , Neoplasias Pancreáticas/etiologia , Pancreatite Crônica/etiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos BALB C , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/patologia
12.
Clin Immunol ; 227: 108752, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945873

RESUMO

Eosinophilic esophagitis (EoE) is often misdiagnosed as GERD; therefore, the goal of the current study is to establish a non-invasive diagnostic and monitoring biomarker that differentiated GERD from EoE. Reports indicates that IL-15 responsive iNKT cells and tissue specific IgE have a critical in EoE pathogenesis, not in GERD. Therefore, we tested the hypothesis that the panel of IL-15-responsive T cell and IgE receptors may be novel non-invasive biomarkers for EoE. Accordingly, the receptors of IL-15 responsive T cells (Vα24, Jα18, γδT, αßT) and IgE (FcεRI & FcεRII) were examined. The data indicates that blood mRNA levels of Vα24, Jα18, γδ T, αß T and FcεRI are significantly reduced in EoE compared to the GERD patients and normal individuals. The ROC curve analysis indicated FcεRII, Jα18 and δ TCR are the positive predictors that discriminate EoE from GERD. Thus, these molecules will be a novel non-invasive diagnostic biomarker for EoE.


Assuntos
Esofagite Eosinofílica/sangue , Refluxo Gastroesofágico/sangue , RNA Mensageiro/sangue , Receptores de Antígenos de Linfócitos T/genética , Receptores de IgE/genética , Receptores de Interleucina-15/genética , Adolescente , Criança , Pré-Escolar , Diagnóstico Diferencial , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/patologia , Feminino , Refluxo Gastroesofágico/diagnóstico , Humanos , Masculino , Células T Matadoras Naturais/metabolismo , Curva ROC , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Adulto Jovem
13.
Semin Immunopathol ; 43(3): 411-422, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783592

RESUMO

Eosinophils comprise approximately 1-4% of total blood leukocytes that reside in the intestine, bone marrow, mammary gland, and adipose tissues to maintain innate immunity in healthy individuals. Eosinophils have four toxic granules known as major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil-derived neurotoxin (EDN), and upon degranulation, these granules promote pathogenesis of inflammatory diseases like allergy, asthma, dermatitis, and gastrointestinal disorders. Additionally, the role of eosinophils is underscored in exocrine disorders including pancreatitis. Chronic pancreatitis (CP) is an inflammatory disorder that occurs due to the alcohol consumption, blockage of the pancreatic duct, and trypsinogen mutation. Eosinophil levels are detected in higher numbers in both CP and pancreatic cancer patients compared with healthy individuals. The mechanistic understanding of chronic inflammation-induced pancreatic malignancy has not yet been reached and requires further exploration. This review provides a comprehensive summary of the epidemiology, pathophysiology, evaluation, and management of eosinophil-associated pancreatic disorders and further summarizes current evidence regarding risk factors, pathophysiology, clinical features, diagnostic evaluation, treatment, and prognosis of eosinophilic pancreatitis (EP) and pancreatic cancer.


Assuntos
Eosinófilos , Neurotoxinas , Proteínas Sanguíneas , Proteínas Granulares de Eosinófilos , Humanos , Ribonucleases
14.
Immunology ; 163(2): 220-235, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33512727

RESUMO

Eosinophils are a common clinical feature associated with chronic allergic diseases, and elemental diets, systemic steroids, anti-IL-5 and anti-IL-13 treatment have shown some therapeutic promise. Herein, we present evidence that pre- and post-intraperitoneal administration of tacrolimus (FK506) is very effective in reducing CCR3/Siglec-F+ eosinophils in Aspergillus-challenged asthma and EoE, CD2-IL-5 induced global eosinophilia, and DOX regulated IL-13-induced asthma. We used flow cytometry and anti-major basic protein (MBP) immunostaining to examine eosinophils in the spleen, bone marrow, BALF, lung, oesophagus and intestine. Additionally, we also performed ELISA and Western blot analyses to show that tacrolimus treatment also reduces the levels of eosinophil-specific cytokines IL-4, IL-5, IL-13 and TGF-ß, eosinophil-specific chemokines Eotaxin-1 and Eotaxin-2, and progenitors of target RCAN1 mRNA and protein levels. Additionally, the current investigations also show that the TGF-ß-mediated oesophageal and lung fibrosis is also reduced in Aspergillus-challenged, CD2-IL-5 transgenic and DOX-responsive IL-13 mice. Mechanistically, we show that tacrolimus in vitro treatment inhibited bone marrow-derived eosinophil proliferation and viability by promoting eosinophil apoptosis that may be associated with downregulation of RCAN1. Taken together, we provide in vivo and in vitro evidence that tacrolimus ameliorates eosinophil levels and associated pathogenesis in allergen-, IL-5- and IL-13-induced EoE, EG and asthma pathogenesis. Considering tacrolimus side-effects and reactivity to several other drugs, we propose the topical use of tacrolimus for paediatric and low-dose oral for adult patients as a novel therapeutic strategy for the clinical trial to reduce mucosal eosinophilia first in steroid-refractory or elemental diet non-responsive adult EoE, EG and asthma patients.


Assuntos
Aspergilose/imunologia , Aspergillus/fisiologia , Asma/tratamento farmacológico , Enterite/tratamento farmacológico , Eosinofilia/tratamento farmacológico , Eosinófilos/imunologia , Gastrite/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Imunossupressores/uso terapêutico , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Pulmão/patologia , Mucosa Respiratória/imunologia , Tacrolimo/uso terapêutico , Alérgenos/imunologia , Animais , Apoptose , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fibrose , Humanos , Interleucina-13/genética , Interleucina-5/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
15.
Methods Mol Biol ; 2241: 275-291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486743

RESUMO

Eosinophils are an important subtype of leukocytes derived from bone marrow multipotent hematopoietic stem cells and represent about 1% of leukocytes in circulating blood. In homeostatic conditions, eosinophils reside in the intestine to maintain the balance of immune responses by communicating with gut microbes without causing inflammation. However, under the stressed or diseased condition, eosinophils degranulate, releasing their granule-derived cytotoxic proteins that are involved in inflammatory responses. Various eosinophil-associated inflammatory diseases are eosinophilic esophagitis (EoE), eosinophilic gastroenteritis (EG), and eosinophilic colitis (EC), together called EGID, asthma, hypereosinophilic syndrome, and eosinophilic pneumonia (EP). Eosinophil degranulation results in the release of their four toxic proteins [major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil-derived neurotoxin (EDN)] which promote disease pathogenesis. Pancreatitis is the inflammatory disease of the pancreas that arises due to blockage of the pancreatic duct, trypsinogen mutation, alcohol consumption, and repeated occurrence of pancreatitis leading to chronic pancreatitis (CP); subsequently some CP patients may also develop pancreatic cancer. The presence of eosinophils is now shown in various case reports with acute, recurrent acute, and chronic pancreatitis and pancreatic cancer indicating the role of eosinophils in the pathogenesis of various pancreatic inflammatory disorders. However, the details of eosinophil accumulation during pancreatic diseases are not well explored and need further attention. Overall, the chapter provides the current understanding of reported eosinophils associated with inflammatory diseases like EGID diseases, asthma, and pancreatic disorders, i.e., acute, chronic pancreatitis, and pancreatic cancer. This knowledge will be helpful for future studies to develop novel treatment options for the eosinophils associated diseases. Therefore, more efforts are needed to perform preclinical and clinical studies in this field for the successful development of eosinophil-targeting treatments for a variety of eosinophil-associated diseases.


Assuntos
Eosinofilia/patologia , Eosinófilos/patologia , Eosinófilos/fisiologia , Animais , Asma/patologia , Modelos Animais de Doenças , Enterite , Proteínas Granulares de Eosinófilos , Peroxidase de Eosinófilo , Neurotoxina Derivada de Eosinófilo , Eosinofilia/imunologia , Esofagite Eosinofílica/patologia , Gastrite , Humanos , Síndrome Hipereosinofílica/patologia , Inflamação/imunologia , Camundongos , Modelos Biológicos
16.
Cytokine Growth Factor Rev ; 54: 24-31, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536564

RESUMO

Coronavirus disease 2019 (COVID-19) is a pulmonary inflammatory disease induced by a newly recognized coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection was detected for the first time in the city of Wuhan in China and spread all over the world at the beginning of 2020. Several millions of people have been infected with SARS-CoV-2, and almost 382,867 human deaths worldwide have been reported so far. Notably, there has been no specific, clinically approved vaccine or anti-viral treatment strategy for COVID-19. Herein, we review COVID-19, the viral replication, and its effect on promoting pulmonary fibro-inflammation via immune cell-mediated cytokine storms in humans. Several clinical trials are currently ongoing for anti-viral drugs, vaccines, and neutralizing antibodies against COVID-19. Viral clearance is the result of effective innate and adaptive immune responses. The pivotal role of interleukin (IL)-15 in viral clearance involves maintaining the balance of induced inflammatory cytokines and the homeostatic responses of natural killer and CD8+ T cells. This review presents supporting evidence of the impact of IL-15 immunotherapy on COVID-19.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Síndrome da Liberação de Citocina/tratamento farmacológico , Imunoterapia/métodos , Interleucina-15/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Citocinas/sangue , Humanos , Imunidade Inata/imunologia , Pandemias , SARS-CoV-2 , Replicação Viral/fisiologia
17.
Int J Basic Clin Immunol ; 3(1-4): 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34136883

RESUMO

OBJECTIVES: Pancreatic malignancy is a major public health problem worldwide and recent reports indicated that pancreatic cancer will be second most common cause of cancer-related deaths by the end of 2021. The cause of increasing death rate is due to the nonexistence of detection tools to early diagnose, poor prognosis, resistance to chemotherapy and also lack in understanding the mechanism of PDAC pathogenesis. Circulating tumor cells (CTCs) play a major role in metastatic step of intravasation and presence of these cells are strong prognostic marker for the progression of pancreatic malignancy in chronic pancreatitis (CP). GOAL: Identifying the novel CTCs in the chronic inflammation mediated experimental model for the progression of malignancy in CP. METHODS: We have performed flow cytometer and immunofluorescence analyses in the lymphoid and lung samples was performed o detect CTCs in the chronic inflammation induced mouse model CP. RESULTS: We report that induced SOX9 positive cells were observed in the blood, lymph node and spleen samples of cerulein with azoximethane (AOM) treated mouse model of CP compared to cerulein alone. Further, we provide evidence that early metastasis through the migration and homing of mega merged SOX9+ and PDX+ ductal stem cells (CTCs) in the lungs of cerulein with AOM treated mice. These identified CTCs in experimentally induced malignant pancreatitis may serve as a novel finding to identify a non-invasive biomarker that needs to be examined in the blood of human pancreatic cancer. CONCLUSIONS: Taken together, the presented data of identified mega merged SOX9+ and PDX+ ductal stem cells (CTCs) may serve a non-invasive biomarker for the early detection of pancreatic malignancy and metastasis.

18.
Cytokine Growth Factor Rev ; 47: 83-98, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31126874

RESUMO

Eosinophils are circulating granulocytes that have pleiotropic effects in response to inflammatory signals in the body. In response to allergens or pathogens, exposure eosinophils are recruited in various organs that execute pathological immune responses. IL-5 plays a key role in the differentiation, development, and survival of eosinophils. Eosinophils are involved in a variety of allergic diseases including asthma, dermatitis and various gastrointestinal disorders (EGID). IL-5 signal transduction involves JAK-STAT-p38MAPK-NFκB activation and executes extracellular matrix remodeling, EMT transition and immune responses in allergic diseases. IL-18 is a classical cytokine also involved in immune responses and has a critical role in inflammasome pathway. We recently identified the IL-18 role in the generation, transformation, and maturation of (CD101+CD274+) pathogenic eosinophils. In, addition, several other cytokines like IL-2, IL-4, IL-13, IL-21, and IL-33 also contribute in advancing eosinophils associated immune responses in innate and adaptive immunity. This review discusses with a major focus (1) Eosinophils and its constituents, (2) Role of IL-5 and IL-18 in eosinophils development, transformation, maturation, signal transduction of IL-5 and IL-18, (3) The role of eosinophils in allergic disorders and (4) The role of several other associated cytokines in promoting eosinophils mediated allergic diseases.


Assuntos
Eosinófilos/imunologia , Hipersensibilidade/imunologia , Interleucina-18/imunologia , Interleucina-5/imunologia , Animais , Humanos , Inflamação/imunologia , Transdução de Sinais
19.
Immunology ; 157(2): 110-121, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30779114

RESUMO

Baseline eosinophils reside in the gastrointestinal tract; however, in several allergic disorders, excessive eosinophils accumulate in the blood as well in the tissues. Recently, we showed in vitro that interleukin (IL)-18 matures and transforms IL-5-generated eosinophils into the pathogenic eosinophils that are detected in human allergic diseases. To examine the role of local induction of IL-18 in promoting eosinophil-associated intestinal disorders, we generated enterocyte IL-18-overexpressing mice using the rat intestinal fatty acid-binding promoter (Fabpi) and analysed tissue IL-18 overexpression and eosinophilia by performing real-time polymerase chain reaction, Enzyme-Linked Immunosorbent Assay and anti-major basic protein immunostaining. Herein we show that Fabpi-IL-18 mice display highly induced IL-18 mRNA and protein in the jejunum. IL-18 overexpression in enterocytes promotes marked increases of eosinophils in the blood and jejunum. Our analysis shows IL-18 overexpression in the jejunum induces a specific population of CD101+  CD274+ tissue eosinophils. Additionally, we observed comparable tissue eosinophilia in IL-13-deficient-Fabpi-IL-18 mice, and reduced numbers of tissue eosinophils in eotaxin-deficient-Fabpi-IL-18 and IL-5-deficient-Fabpi-IL-18 mice compared with Fabpi-IL-18 transgenic mice. Notably, jejunum eosinophilia in IL-5-deficient-Fabpi-IL-18 mice is significantly induced compared with wild-type mice, which indicates the direct role of induced IL-18 in the tissue accumulation of eosinophils and mast cells. Furthermore, we also found that overexpression of IL-18 in the intestine promotes eosinophil-associated peanut-induced allergic responses in mice. Taken together, we provide direct in vivo evidence that induced expression of IL-18 in the enterocytes promotes eotaxin-1, IL-5 and IL-13 independent intestinal eosinophilia, which signifies the clinical relevance of induced IL-18 in eosinophil-associated gastrointestinal disorders (EGIDs) to food allergens.


Assuntos
Enterócitos/imunologia , Eosinófilos/imunologia , Interleucina-18/imunologia , Jejuno/imunologia , Hipersensibilidade a Amendoim/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Enterócitos/patologia , Eosinófilos/patologia , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-18/genética , Interleucina-5/genética , Interleucina-5/imunologia , Jejuno/patologia , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Camundongos Transgênicos , Hipersensibilidade a Amendoim/genética , Hipersensibilidade a Amendoim/patologia , Ratos
20.
Int J Basic Clin Immunol ; 2: 1-12, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-32296783

RESUMO

BACKGROUND AND AIM: IgE-mediated immune responses contribute to the pathogenesis of eosinophilic esophagitis (EoE). Interleukin (IL)-4 is a well-established cytokine involved in B cell activation, immunoglobulin (Ig) E production and isotype class switching. Earlier reports indicated that IL-15, B cells and IgE are induced in EoE pathogenesis. Therefore, we hypothesized that induced IL-15 and IgE may have a significant correlation in promoting EoE pathogenesis. METHODS: Accordingly, we performed ELISA, qPCR, flowcytometric and immunostaining analyses to examine IgE, B cells, eosinophils and mast cells in the esophagus of IL-15 overexpressed mice following EoE induction. RESULTS: Herein, we show that IL-15 overexpressed mice indeed have induced baseline IL-4, B cells, eosinophils, mast cells and IgE levels in the blood and esophagus. Further, we observed that IL-15 overexpressed mice show induction of IgE, and accumulation of degranulated eosinophils and mast cells in allergen-induced experimental EoE. Notably, despite induced blood IgE, esophageal eosinophilia is not induced in intestinal fatty acid binding protein IL-15 overexpressed gene (Fabpi-IL-15) mice. Fabpi-IL-15 transgenic mice showed IgE in the blood and intestine and intestinal eosinophilia, but no esophageal eosinophilia at baseline and comparable eosinophils in the esophagus of saline and allergen challenged Fabpi-IL-15 mice. Similarly, allergen challenged IL-15 gene-deficient mice show reduced IgE and esophageal eosinophilia in allergen-induced experimental EoE. CONCLUSIONS: Taken together, we for the first time provide direct evidence that tissue-specific IL-15 induced IgE mediated responses, not systemic IgE is critical in promoting EoE pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA