RESUMO
A bioinspired semisynthesis of human-interleukin-6 bearing N-glycan at Asn143 (143glycosyl-IL-6) was performed by intentional glycosylation effects and protein folding chemistry for regioselective peptide-backbone activation. 143Glycosyl-IL-6 is a genetically coded cytokine, but isolation was difficult owing to a tiny amount. IL6-polypeptide (1-141-position) with an intentionally inserted cysteine at 142-position was expressed in E. coli. The expressed polypeptide was treated with a chemical folding process to make a specific helices bundle conformation through native two-disulfide bonds (43-49 and 72-82). Utilizing the successfully formed free-142-cysteine, sequential conversions using cyanylation of 142-cysteine, hydrazinolysis, and thioesterification created a long polypeptide (1-141)-thioester. However, the resultant polypeptide-thioester caused considerable aggregation owing to a highly hydrophobic peptide sequence. After the reduction of two-disulfide bonds of polypeptide (1-141)-thioester, an unprecedented hydrophilic N-glycan tag was inserted at the resultant cysteine thiols. The N-glycan tags greatly stabilized polypeptide-thioester. The subsequent native chemical ligation and desulfurization successfully gave a whole 143glycosyl-IL-6 polypeptide (183-amino acids). Removal of four N-glycan tags and immediate one-pot in vitro folding protocol efficiently produced the folded 143glycosyl-IL-6. The folded 143glycosyl-IL-6 exhibited potent cell proliferation activity. The combined studies with molecular dynamics simulation, semisynthesis, and bioassays predict the bioactive conformation of latent 143glycosyl-IL-6.
RESUMO
Semisynthesis using recombinant polypeptides as building blocks is a powerful approach for the preparation of proteins with a variety of modifications such as glycosylation. The activation of the C terminus of recombinant peptides is a key step for coupling peptide building blocks and preparing a full-length polypeptide of a target protein. This article reports two chemical approaches for transformation of the C terminus of recombinant polypeptides to thioester surrogates. The first approach relies on efficient substitution of the C-terminal Cys residue with bis(2-sulfanylethyl)amine (SEA) to yield peptide-thioester surrogates. The second approach employs a native tripeptide, cysteinyl-glycyl-cysteine (CGC), to yield peptide-thioesters via a process mediated by a thioester surrogate. Both chemical transformation methods employ native peptide sequences and were thereby successfully applied to recombinant polypeptides. As a consequence, we succeeded in the semisynthesis of a glycosylated form of inducible T cell costimulator (ICOS) for the first time.
Assuntos
Cisteína , Peptídeos , Sequência de Aminoácidos , Glicoproteínas , GlicosilaçãoRESUMO
In order to synthesize interferon-γ glycoform having an oligosaccharide at the 97 position by a semi-synthetic method, interferon-γ-polypeptide-(1-94)-α-hydrazide was prepared by the specific Cys-cyanylation of polypeptide-(1-94)-Cys-His6 expressed from E. coli and subsequent hydrazinolysis in 22% yield (two steps). This polypeptide-α-hydrazide was then converted into corresponding polypeptide-α-thioester under NaNO2 /acid conditions followed by thiolysis in 83% yield.