Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Psychiatry Neurosci ; 46(4): E480-E489, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34346201

RESUMO

Background: Abnormally high activity in the lateral habenula causes anxiety- or depression-like behaviours in animal experimental models. It has also been reported in humans that excessive stress in early life is correlated with the onset of psychiatric disorders in adults. These findings raise the question of whether maturation of the lateral habenula is affected under the influence of early-life experiences, which could govern behaviours throughout life. Methods: We examined the maturation of the lateral habenula in mice based on neuronal activity markers and plastic components: Zif268/Egr1, parvalbumin and perineuronal nets. We examined the effect of early-life stress using repeated maternal deprivation. Results: First, we found a transient highly sensitive period of the lateral habenula under stress. The lateral habenula matured through 4 stages: postnatal days 1-9 (P1-9), P10-20, around P35 and after P35. At P10-20, the lateral habenula was highly sensitive to stress. We also observed experience-dependent maturation of the lateral habenula. Only mice exposed to chronic stress from P10-20 exhibited changes specific to the lateral habenula at P60: abnormally high stress reactivity shown by Zif268/Egr1 and fewer parvalbumin neurons. These mice showed anxiety- or depression-like behaviours in the light-dark box test and forced swim test. Limitations: The effect of parvalbumin neurons in the lateral habenula on behavioural alterations remains unknown. It will be important to understand the "sensitive period" of the neuronal circuits in the lateral habenula and how the period P10-20 is different from P9 or earlier, or P35 or later. Conclusion: In mice, early-life stress in the period P10-20 led to late effects in adulthood: hyperactivity in the lateral habenula and anxiety or depression, indicating differences in neuronal plasticity between stages of lateral habenula maturation.


Assuntos
Ansiedade , Depressão , Modelos Animais de Doenças , Habenula , Estresse Psicológico , Animais , Camundongos , Ansiedade/etiologia , Ansiedade/patologia , Biomarcadores , Depressão/etiologia , Depressão/patologia , Habenula/crescimento & desenvolvimento , Habenula/metabolismo , Habenula/patologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
2.
Front Neural Circuits ; 14: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547372

RESUMO

To understand functional neuronal circuits for emotion in the basal forebrain, patterns of neuronal activation were examined in mice by immunohistochemistry of immediate-early gene products (Zif268/Egr1 and c-Fos). In all mice examined, clusters of 30-50 neurons expressing Zif268 were found on both sides in the area between the extended amygdala (EA) and globus pallidus (GP), generally designated as sublenticular extended amygdala (SLEA). The clusters consisted of 79.9 ± 3.0% of GABAergic neurons in GAD65-mCherry mice. The expression of the cholinergic marker choline acetyltransferase and the GP markers parvalbumin, proenkephalin, and FoxP2 indicated that these neurons were different from known types of neurons in the EA and GP; therefore, we named them the sublenticular extended amygdalar Zif268/Egr1-expressing neuronal cluster (SLEA-zNC). Sublenticular extended amygdalar Zif268/Egr1-expressing neuronal clusters participated in stress processing because increasing numbers of cells were observed in SLEA-zNCs after exposure to restraint stress (RS), the induction of which was suppressed by diazepam treatment. Mapping SLEA-zNCs showed that their positions and arrangement varied individually; SLEA-zNCs were distributed asymmetrically and tended to be situated mainly in the middle region between the anterior commissure (AC) and posterior end of the GP. However, the total cell number in SLEA-zNCs was compatible between the right and left hemispheres after activation by RS. Therefore, SLEA-zNCs were distributed asymmetrically but were not lateralized. Because time courses of activation differed between the Zif268 and c-Fos, the sequential dual treatment of RSs enabled us to differentiate SLEA-zNCs activated by the first and second RS. The results supported that the same SLEA-zNCs responded to both the first and second RS, and this also applied for all SLEA-zNCs. Thus, we concluded that the cluster positions were invariable under RS in each mouse but were distributed differently between individual mice. We name these newly identified neuronal clusters as stress-related neuronal clusters, SLEA-zNCs, which are considered to be novel functional units of "islands of activation." Moreover, SLEA-zNCs were situated at different positions in all mice examined, showing individual differences in their positions.


Assuntos
Tonsila do Cerebelo/metabolismo , Prosencéfalo Basal/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/química , Tonsila do Cerebelo/citologia , Animais , Prosencéfalo Basal/química , Prosencéfalo Basal/citologia , Feminino , Neurônios GABAérgicos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/química , Restrição Física/efeitos adversos , Restrição Física/psicologia , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA