Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166580, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633387

RESUMO

The facilitation of microplastics (MPs) on bacterial resistance has attracted wide concern, due to the widespread presence of MPs in environmental media and their ubiquitous contact with bacteria strains. Furthermore, MPs possibly co-exist with antibiotics to trigger combined stress on bacterial survival. Therefore, it is significant to reveal the dose-responses of MPs and MP-antibiotic mixtures on bacterial endogenous and exogenous resistance. In this study, 0.1 and 5 µm polystyrenes with no surface functionalization (PS-NF, no charge), surface functionalized with amino groups (PS-NH2, positive charge) and carboxyl groups (PS-COOH, negative charge) were selected as the test MPs, and norfloxacin (NOR) was set as the representative of antibiotics. It was found that six types of PS all inhibited the growth of Escherichia coli (E. coli) but induced hormetic dose-responses on the mutation frequency (MF) and conjugative transfer frequency (CTF) of RP4 plasmid in E. coli. Moreover, these hormetic effects exhibited size- and surface charge-dependent features, where 0.1 µm PS-NH2 (100 mg/L) triggered the maximum stimulatory rates on MF (363.63 %) and CTF (74.80 %). The hormetic phenomena of MF and CTF were also observed in the treatments of PS-NOR mixtures, which varied with the particle size and surface charge of PS. In addition, the interactive effects between PS and NOR indicated that the co-existence of PS and NOR might trigger greater resistance risk than the single pollutants. Mechanistic exploration demonstrated that the increase of cellular reactive oxygen species and the variation of cell membrane permeability participated in the hormetic effects of PS and PS-NOR mixtures on bacterial resistance. This study provides new insights into the individual effects of MPs and the combined effects of MP-antibiotic mixtures on bacterial resistance, which will promote the development of environmental risk assessment of MPs from the perspective of bacterial resistance.

2.
Sci Total Environ ; 885: 163773, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146826

RESUMO

With the development of the petrochemical industry, a large amount of naphthenic acids in petrochemical wastewater was accumulated in the environment, causing serious environmental pollution. Most of the commonly used methods for the determination of naphthenic acids have the characteristics of high energy consumption, complicated pretreatment, long detection cycle, and the need to send samples to analytical laboratories. Therefore, it is essential to develop an efficient and low-cost field analytical method for rapidly naphthenic acids quantify. In this study, nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents (NADESs) was successfully synthesized by a one-step solvothermal method. The fluorescence property of carbon quantum dots was used to achieve the quantitative detection of naphthenic acids in wastewater. The prepared N-CQDs showed excellent fluorescence and stability, showed a good response to naphthenic acids and a linear relationship in the concentration range of naphthenic acids from 0.03 to 0.09 mol‧L-1. The effect of common interferents in petrochemical wastewater on the detection of naphthenic acids by N-CQDs was investigated. The results showed that N-CQDs had good specificity for the detection of naphthenic acids. N-CQDs was applied to the naphthenic acids wastewater, and the concentration of naphthenic acids in the wastewater was successfully calculated according to the fitting equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA