Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39338330

RESUMO

BACKGROUND/OBJECTIVES: Hydroxypropyl methylcellulose (HPMC) is one of the most commonly used hydrophilic polymers in formulations of matrix tablets for controlled release applications. However, HPMC attracts moisture and poses issues with drug stability in formulations containing moisture-sensitive drugs. METHODS: Herein, the moisture sorption behavior of excipients and drug stability using aspirin as the model drug in matrix tablets were evaluated, using HPMC and the newly developed mannitol-coated HPMC, under accelerated stability conditions (40 °C, 75% relative humidity) with open and closed dishes. RESULTS: Tablets prepared with mannitol-coated HPMC showed a slower drug degradation rate compared to tablets prepared with directly compressible HPMC. Initial moisture content and hygroscopicity were stronger predictors of drug stability compared to water activity when comparing samples without similar moisture content. In the early stage (day 0 to 30), the aspirin degradation rate was similar in both open and closed conditions, as moisture content is the main degradation contributor. In the later stage (day 30 to 90), aspirin degradation was faster under closed conditions than under open conditions, likely due to autocatalytic effects caused by the volatile acidic by-product entrapped in the closed environment. CONCLUSIONS: The findings from this study reinforced the importance of judicious excipient selection based on the understanding of excipient-moisture interactions to maximize the chemical stability of moisture-sensitive drugs. Mannitol-coated HPMC is a promising addition to the formulator's toolbox for the formulation of controlled release dosage forms by direct compression.

2.
Int J Pharm ; 660: 124298, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38825172

RESUMO

One of the most common forms of controlled release technology for oral drug delivery comprises an active ingredient dispersed in a hydrophilic matrix forming polymer such as hydroxypropyl methylcellulose (HPMC), which is tableted via direct compression. However, HPMC may pose problems in direct compression due to its poor flowability. Hence, mannitol syrup was spray-coated over fluidized HPMC particles to produce co-processed HPMC-mannitol at ratios of 20:80, 50:50, and 70:30. Particles of pure HPMC, co-processed HPMC-mannitol, and their respective physical mixtures were evaluated for powder flowability, compression profiles, and controlled release performance. It was found that co-processed HPMC-mannitol consisted of particles with improved flow compared to pure HPMC particles. Sufficiently strong tablets of >2 MPa could be produced at moderate to high compression forces of 150-200 MPa. The dissolution profile could be tuned to obtain desired release profiles by altering HPMC-mannitol ratios. Co-processed HPMC-mannitol offers an interesting addition to the formulator's toolbox in the design of controlled release formulations for direct compression.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Excipientes , Derivados da Hipromelose , Manitol , Comprimidos , Manitol/química , Derivados da Hipromelose/química , Excipientes/química , Preparações de Ação Retardada/química , Solubilidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Pós
3.
Int J Pharm ; 553(1-2): 474-482, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30385375

RESUMO

The distribution of granulating liquid is known to affect the high shear wet granulation process but the impact of the spray nozzle attributes is still unclear. While homogenous liquid distribution can be achieved by using a spray nozzle, the effect of different nozzle aperture sizes on granule properties is not well understood. In this study, nozzles of different aperture sizes were used to introduce the granulating liquid in high shear wet granulation using different process parameters. Design of experiment approach was utilised to assess effect of process parameters on granule properties. Granules produced with different spray nozzles were evaluated for binder distribution inhomogeneity, size, shape, flowability and compression attributes such as tabletability and yield pressure. Coarser granules with better flow properties were produced using the smaller aperture size nozzle. On the other hand, granules had better tabletability and lower yield pressure when larger aperture size nozzle was used. Furthermore, size of granules produced by using larger aperture size nozzle was more affected by changes in the process variables which could be influenced by the differences in granulating liquid feed rate and spray droplet size. Although the granules aspect ratios were comparable across the nozzle aperture sizes, granules produced from smaller aperture size nozzle appeared to be rounder. Regardless of the nozzle aperture sizes, homogenous binder distribution was achieved. The findings from this study could be a useful guide to the selection of the appropriate nozzle aperture size in wet granulation.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes/química , Tecnologia Farmacêutica/métodos , Metformina/administração & dosagem , Metformina/química , Tamanho da Partícula , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA