Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Sci Rep ; 14(1): 13626, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871748

RESUMO

In this manuscript, we develop a multi-party framework tailored for multiple data contributors seeking machine learning insights from combined data sources. Grounded in statistical learning principles, we introduce the Multi-Key Homomorphic Encryption Logistic Regression (MK-HELR) algorithm, designed to execute logistic regression on encrypted multi-party data. Given that models built on aggregated datasets often demonstrate superior generalization capabilities, our approach offers data contributors the collective strength of shared data while ensuring their original data remains private due to encryption. Apart from facilitating logistic regression on combined encrypted data from diverse sources, this algorithm creates a collaborative learning environment with dynamic membership. Notably, it can seamlessly incorporate new participants during the learning process, addressing the key limitation of prior methods that demanded a predetermined number of contributors to be set before the learning process begins. This flexibility is crucial in real-world scenarios, accommodating varying data contribution timelines and unanticipated fluctuations in participant numbers, due to additions and departures. Using the AI4I public predictive maintenance dataset, we demonstrate the MK-HELR algorithm, setting the stage for further research in secure, dynamic, and collaborative multi-party learning scenarios.

2.
Biomolecules ; 14(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927020

RESUMO

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Violeta Genciana , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Violeta Genciana/química , Amiloide/metabolismo , Amiloide/química , Tomografia por Emissão de Pósitrons , Feminino
3.
Artigo em Inglês | MEDLINE | ID: mdl-38820803

RESUMO

The northern house mosquito, Culex pipiens, employs diapause as an essential survival strategy during winter, inducing important phenotypic changes such as enhanced stress tolerance, lipid accumulation, and extended longevity. During diapause, the cessation of reproductive development represents another distinctive phenotypic change, underlining the need for adjusted modulation of gene expressions within the ovary. Although considerable advancements in screening gene expression profiles in diapausing and non-diapausing mosquitoes, there remains a gap in tissue-specific transcriptomic profiling that could elucidate the complicated formation of diverse diapause features in Cx. pipiens. Here, we filled this gap by utilizing RNA sequencing, providing a detailed examination of gene expression patterns in the fat body and ovary during diapause compared to non-diapause conditions. Functional annotation of upregulated genes identified associations with carbohydrate metabolism, stress tolerance, immunity, and epigenetic regulation. The validation of candidate genes using quantitative real-time PCR verified the differentially expressed genes identified in diapausing mosquitoes. Our findings contribute novel insights into potential regulators during diapause in Cx. pipiens, thereby opening possible avenues for developing innovative vector control strategies.


Assuntos
Culex , Corpo Adiposo , Perfilação da Expressão Gênica , Ovário , Animais , Culex/genética , Culex/metabolismo , Culex/crescimento & desenvolvimento , Feminino , Corpo Adiposo/metabolismo , Ovário/metabolismo , Diapausa de Inseto , Redes e Vias Metabólicas , Transcriptoma , Especificidade de Órgãos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
4.
BMJ ; 385: q726, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658040
5.
Adv Drug Deliv Rev ; 209: 115301, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38570141

RESUMO

Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception. Leveraging the Consortium's collective expertise, we provide an assessment of the comparative and interdependent factors likely to impact SC injection pain. In addition, we offer expert insights and future perspectives to fill identified gaps in knowledge to help advance the development of patient-centric and well tolerated high-dose/high-volume SC drug delivery solutions.


Assuntos
Dor , Humanos , Injeções Subcutâneas , Dor/tratamento farmacológico , Sistemas de Liberação de Medicamentos
6.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409869

RESUMO

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Assuntos
Ecdisterona , Indometacina , Humanos , Animais , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insetos/metabolismo , Linhagem Celular , Hormônios , Sistema Nervoso/metabolismo , Proteínas de Insetos/metabolismo
7.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132101

RESUMO

Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS-FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL-PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10-PARL-PINK1 pathway.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mitofagia/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/genética , Mamíferos/metabolismo , Metaloproteases/genética
9.
Drug Deliv ; 30(1): 2252999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702020

RESUMO

Subcutaneous (SC) infusion of large volumes at rapid flow rates has historically been limited by the glycosaminoglycan hyaluronan (HA), which forms a barrier to bulk fluid flow in the SC space. Recombinant human hyaluronidase PH20 (rHuPH20) depolymerizes HA, temporarily eliminating this barrier to rapid SC delivery of large volume co-administered therapeutics. Using a miniature pig model, in-line pressure and applied force to the delivery hardware were measured when subcutaneously infusing a representative macromolecule (human polyclonal immunoglobulin [Ig]), at varying concentrations and viscosities (20-200 mg/mL), co-formulated with and without rHuPH20 (2000 U/mL and 5000 U/mL). Maximal flow rate (Qmax) was calculated as the flow rate producing a statistically significant difference in mean applied force between injections administered with or without rHuPH20. There was a significant reduction in mean applied force required for SC delivery of 100 mg/mL Ig solution with 5000 U/mL rHuPH20 versus Ig solution alone. Similar significant reductions in mean applied force were observed for most Ig solution concentrations, ranging from 25-200 mg/mL when administered with or without 2000 U/mL rHuPH20. Qmax was inversely proportional to Ig solution viscosity and Qmax for solutions co-formulated with 5000 U/mL rHuPH20 was approximately double that of 2000 U/mL rHuPH20 solutions. Mathematical simulation of a hypothetical 800 mg Ig dose co-formulated with rHuPH20 showed that delivery times <30 s could be achieved across a broad range of concentrations. Addition of rHuPH20 can help overcome volume and time constraints associated with SC administration across a range of concentrations in a dose-dependent manner.


Assuntos
Anticorpos , Hialuronoglucosaminidase , Humanos , Suínos , Animais , Porco Miniatura , Viscosidade , Simulação por Computador , Ácido Hialurônico
10.
Proc Natl Acad Sci U S A ; 120(30): e2217128120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463212

RESUMO

Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-ß accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neuroproteção , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia
11.
J Biomol Struct Dyn ; : 1-10, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349880

RESUMO

The mitochondria are responsible for producing energy within the cell, and in mitochondrial myopathy, there is a defect in the energy production process. The CHCHD10 gene codes for a protein called coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), which is found in the mitochondria and is involved in the regulation of mitochondrial function. G58R mutation has been shown to disrupt the normal function of CHCHD10, leading to mitochondrial dysfunction and ultimately to the development of mitochondrial myopathy. The structures of G58R mutant CHCHD10 and how G58R mutation impacts the wild-type CHCHD10 protein at the monomeric level are unknown. To address this problem, we conducted homology modeling, multiple run molecular dynamics simulations and bioinformatics calculations. We represent herein the structural ensemble properties of the G58R mutant CHCHD10 (CHCHD10G58R) in aqueous solution. Moreover, we describe the impacts of G58R mutation on the structural ensembles of wild-type CHCHD10 (CHCHD10WT) in aqueous solution. The dynamics properties as well as structural properties of CHCHD10WT are impacted by the mitochondrial myopathy-related G58R mutation. Specifically, the secondary and tertiary structure properties, root mean square fluctuations, Ramachandran diagrams and results from principal component analysis demonstrate that the CHCHD10WT and CHCHD10G58R proteins possess different structural ensemble characteristics and describe the impacts of G58R mutation on CHCHD10WT. These findings may be helpful for designing new treatments for mitochondrial myopathy.Communicated by Ramaswamy H. Sarma.

12.
ACS Chem Neurosci ; 14(11): 2134-2145, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194187

RESUMO

The V57E pathological variant of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) plays a role in frontotemporal dementia. The wild-type and V57E mutant CHCHD10 proteins contain intrinsically disordered regions, and therefore, these regions hampered structural characterization of these proteins using conventional experimental tools. For the first time in the literature, we represent that the V57E mutation is pathogenic to mitochondria as it increases mitochondrial superoxide and impairs mitochondrial respiration. In addition, we represent here the structural ensemble properties of the V57E mutant CHCHD10 and describe the impacts of V57E mutation on the structural ensembles of wild-type CHCHD10 in aqueous solution. We conducted experimental and computational studies for this research. Namely, MitoSOX Red staining and Seahorse Mito Stress experiments, atomic force microscopy measurements, bioinformatics, homology modeling, and multiple-run molecular dynamics simulation computational studies were conducted. Our experiments show that the V57E mutation results in mitochondrial dysfunction, and our computational studies present that the structural ensemble properties of wild-type CHCHD10 are impacted by the frontotemporal dementia-associated V57E genetic mutation.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas Mitocondriais/química , Mitocôndrias/metabolismo , Mutação/genética , Esclerose Lateral Amiotrófica/metabolismo
13.
J Pers Med ; 13(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37109086

RESUMO

Understanding the regulatory mechanisms underlying corneal epithelial cell (CEC) proliferation in vitro may provide the means to boost CEC production in cell therapy for ocular disorders. The transcription factor ΔNp63 plays a crucial role in the proliferation of CECs, but the underlying mechanisms is yet to be elucidated. TP63 and ΔNp63 are encoded by the TP63 gene via alternative promoters. We previously reported that both ΔNp63 and activating transcription factor (ATF3) are substantially expressed in cultured CECs, but the regulatory relationship between ΔNp63 and ATF3 is unknown. In the present study, we found that ΔNp63 increased ATF3 expression and ATF3 promoter activity in cultured CECs. The deletion of the p63 binding core site reduced ATF3 promoter activity. CECs overexpressing ATF3 exhibited significantly greater proliferation than control CECs. ATF3 knockdown suppressed the ΔNp63-induced increase in cell proliferation. Overexpression of ATF3 in CECs significantly elevated protein and mRNA levels of cyclin D. The protein levels of keratin 3/14, integrin ß1, and involucrin did not differ between ATF3-overexpressing CECs, ATF3-downregulated CECs, and control cells. In conclusion, our results suggest that ΔNp63 increases CEC proliferation via the ΔNp63/ATF3/CDK pathway.

14.
Mol Oncol ; 17(6): 1076-1092, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081807

RESUMO

Hyaluronan (HA) is a key component of the dense extracellular matrix in breast cancer, and its accumulation is associated with poor prognosis and metastasis. Pegvorhyaluronidase alfa (PEGPH20) enzymatically degrades HA and can enhance drug delivery and treatment response in preclinical tumour models. Clinical development of stromal-targeted therapies would be accelerated by imaging biomarkers that inform on therapeutic efficacy in vivo. Here, PEGPH20 response was assessed by multiparametric magnetic resonance imaging (MRI) in three orthotopic breast tumour models. Treatment of 4T1/HAS3 tumours, the model with the highest HA accumulation, reduced T1 and T2 relaxation times and the apparent diffusion coefficient (ADC), and increased the magnetisation transfer ratio, consistent with lower tissue water content and collapse of the extracellular space. The transverse relaxation rate R2 * increased, consistent with greater erythrocyte accessibility following vascular decompression. Treatment of MDA-MB-231 LM2-4 tumours reduced ADC and dramatically increased tumour viscoelasticity measured by MR elastography. Correlation matrix analyses of data from all models identified ADC as having the strongest correlation with HA accumulation, suggesting that ADC is the most sensitive imaging biomarker of tumour response to PEGPH20.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Feminino , Ácido Hialurônico/metabolismo , Microambiente Tumoral , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos
15.
Proteins ; 91(6): 739-749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625206

RESUMO

The G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10. We find that the structural properties, potential of mean force surfaces, and principal component analysis show stark differences between these two proteins. These results are important for a better pathology, biochemistry and structural biology understanding of CHCHD10 and its G66V genetic variant and it is likely that these reported structural properties are important for designing more efficient treatments for the Jokela type of spinal muscular atrophy disease.


Assuntos
Proteínas Mitocondriais , Atrofia Muscular Espinal , Humanos , Proteínas Mitocondriais/química , Mutação , Mitocôndrias/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células HeLa
16.
Curr Oncol ; 30(1): 769-785, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661708

RESUMO

We assessed the impact of COVID-19 on healthcare visits, timing of stage IV NSCLC diagnosis and immunotherapy initiation, and rates of switching to extended dosing schedules of immunotherapies among patients with stage IV NSCLC. This retrospective study examined electronic health record data of adult patients receiving treatment for stage IV NSCLC within The US Oncology Network and Onmark. Endpoints were compared for February-July 2019 (before COVID) vs. February-July 2020 (during COVID). The study found rapid decreases in numbers of patients with clinic/vital visits, immunotherapy initiations, and new diagnoses of stage IV NSCLC during April-May 2020 vs. April-May 2019. The rate of delays of immunotherapy administrations and proportions of patients with such delays increased from February to March of 2020. These patterns may have resulted from the increase in COVID-19 cases during this period and the corresponding quarantine and lockdowns. However, when comparing pre COVID-19 and during COVID-19 for May and after, the differences in delay of immuno-oncology administrations became less marked, likely due to lifting of lockdowns. The rate of switching from shorter to longer dosing schedules increased from May-July 2020. This was mainly attributed to pembrolizumab, likely due to FDA approval of the pembrolizumab 6W dosing schedule in April 2020.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , COVID-19/epidemiologia , Neoplasias Pulmonares/terapia , Estudos Retrospectivos , Pandemias , Controle de Doenças Transmissíveis
17.
Am J Respir Cell Mol Biol ; 68(4): 417-429, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662576

RESUMO

TAS2Rs (bitter taste receptors) are GPCRs (G protein-coupled receptors) expressed on human airway smooth muscle (HASM) cells; when activated by receptor agonists they evoke marked airway relaxation. In both taste and HASM cells, TAS2Rs activate a canonical Gßγ-mediated stimulation of Ca2+ release from intracellular stores by activation of PLCß (phospholipase Cß). Alone, this [Ca2+]i signaling does not readily account for relaxation, particularly since bronchoconstrictive agonists acting at Gq-coupled receptors also increase [Ca2+]i. We established that TAS2R14 activation in HASM promotes relaxation through F-actin (filamentous actin) severing. This destabilization of actin was from agonist-promoted activation (dephosphorylation) of cofilin, which was pertussis toxin sensitive. Cofilin dephosphorylation was due to TAS2R-mediated deactivation of LIM domain kinase. The link between early receptor action and the distal cofilin dephosphorylation was found to be the polarity protein partitioning defective 3 (Par3), a known binding partner with PLCß that inhibits LIM kinase. The physiologic relevance of this pathway was assessed using knock-downs of cofilin and Par3 in HASM cells and in human precision-cut lung slices. Relaxation by TAS2R14 agonists was ablated with knock-down of either protein as assessed by magnetic twisting cytometry in isolated cells or intact airways in the slices. Blocking [Ca2+]i release by TAS2R14 inhibited agonist-promoted cofilin dephosphorylation, confirming a role for [Ca2+]i in actin-modifying pathways. These results further elucidate the mechanistic basis of TAS2R-mediated HASM relaxation and point toward nodal points that may act as asthma or chronic obstructive pulmonary disease response modifiers or additional targets for novel bronchodilators.


Assuntos
Actinas , Asma , Receptores Acoplados a Proteínas G , Humanos , Actinas/metabolismo , Asma/metabolismo , Quinases Lim/metabolismo , Pulmão/metabolismo , Relaxamento Muscular/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
18.
Am J Ophthalmol ; 251: 126-142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36549584

RESUMO

PURPOSE: To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection. DESIGN: Multicenter cross-sectional case-control retrospective study. METHODS: A total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 "bilateral" keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy. RESULTS: The area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001). CONCLUSIONS: AI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Assuntos
Ceratocone , Humanos , Estudos Retrospectivos , Topografia da Córnea/métodos , Ceratocone/diagnóstico , Inteligência Artificial , Dilatação Patológica/diagnóstico , Paquimetria Corneana/métodos , Estudos Transversais , Córnea/diagnóstico por imagem , Curva ROC , Tomografia/métodos
19.
J Cataract Refract Surg ; 49(1): 69-75, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36026693

RESUMO

PURPOSE: To analyze the 6-month outcomes of the treatment combination of the monocular bi-aspheric ablation profile (PresbyMAX) and contralateral aspheric monofocal laser in situ keratomileusis (LASIK) ablation profile for correction of myopia and presbyopia. SETTING: Yonsei University College of Medicine and Eyereum Eye Clinic, Seoul, South Korea. DESIGN: Retrospective case series. METHODS: This was a retrospective case review of 92 patients (184 eyes) diagnosed with myopia who underwent uneventful simultaneous bi-aspheric ablation in the nondominant eye and aspheric monofocal regular LASIK in the dominant eye to correct myopia and presbyopia between January 2017 and August 2020. Monocular and binocular uncorrected distance visual acuity (UDVA) and near visual acuity (UNVA), and corrected distance visual acuity and near visual acuity were analyzed postoperatively. RESULTS: At 6 months postoperatively, the mean UDVAs (logMAR) in the dominant and nondominant eyes were 0.01 ± 0.02 and 0.26 ± 0.15, respectively. Furthermore, all treated dominant eyes achieved 20/20 or better monocular UDVA, and 84% achieved 20/16 or better monocular UDVA. In the nondominant treated eyes, 89% achieved 20/50 or better monocular UDVA, 78% achieved 20/40 or better, and 34% achieved 20/32 or better. The binocular cumulative UDVA at 6 months postoperatively was 20/20 or better in all patients. All patients achieved J2 or better in binocular cumulative UNVA, and 83% achieved J1. CONCLUSIONS: Presbyopia correction using the combination of PresbyMAX in the near eye and aspheric monofocal regular LASIK in the distant eye is a safe and effective treatment for presbyopia in patients with myopia.


Assuntos
Ceratomileuse Assistida por Excimer Laser In Situ , Miopia , Presbiopia , Humanos , Presbiopia/cirurgia , Estudos Retrospectivos , Visão Binocular , Topografia da Córnea , Córnea/cirurgia , Miopia/cirurgia , Resultado do Tratamento , Lasers de Excimer , Refração Ocular
20.
Arch Insect Biochem Physiol ; 112(1): e21972, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36164283

RESUMO

After reading contradictory claims of model status for some insect species, we feel a brief discussion of the topic may be useful. Here, we document a few examples where clarity on model status seems to be lacking, briefly review work on widely recognized models, and offer criteria for including any given species as a model organism.


Assuntos
Insetos , Modelos Animais , Animais , Insetos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA