Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2755, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179387

RESUMO

Owing to the strong absorption of water in the near-infrared (NIR) region near 1.0 µm, this wavelength is considered unsuitable as an imaging and analytical signal in biological environments. However, 1.0 µm NIR can be converted into heat and used as a local water-molecular heating strategy for the photothermal therapy of biological tissues. Herein, we describe a Nd-Yb co-doped nanomaterial (water-heating nanoparticles (NPs)) as strong 1.0 µm emissive NPs to target the absorption band of water. Furthermore, introducing Tm ions into the water-heating NPs improve the NIR lifetime, enabling the development of a NIR imaging-guided water-heating probe (water-heating NIR NPs). In the glioblastoma multiforme male mouse model, tumor-targeted water-heating NIR NPs reduce the tumor volume by 78.9% in the presence of high-resolution intracranial NIR long-lifetime imaging. Hence, water-heating NIR NPs can be used as a promising nanomaterial for imaging and photothermal ablation in deep-tissue-bearing tumor therapy.


Assuntos
Glioblastoma , Nanopartículas , Animais , Camundongos , Masculino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Terapia Fototérmica , Calefação , Diagnóstico por Imagem , Fototerapia , Linhagem Celular Tumoral
2.
Biosens Bioelectron ; 190: 113369, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098357

RESUMO

Many conventional optical biosensing systems use a single responsive signal in the visible light region. This limits their practical applications, as the signal can be readily perturbed by various external environmental factors. Herein, a near-infrared (NIR)-based self-calibrating luminescence resonance energy transfer (LRET) system was developed for background-free detection of analytes in homogeneous sandwich-immunoassays. The inorganic LRET pair was comprised of NIR dual-emitting lanthanide-doped nanoparticles (LnNPs) as donors and NIR-absorbing LnNPs as acceptors, which showed a narrow absorption peak (800 nm) and long-term stability, enabling stable LRET with a built-in self-calibrating signal. Screened single-chain variable fragments (scFvs) were used as target avian influenza virus (AIV)-binding antibodies to increase the LRET efficiency in sandwich-immunoassays. The compact sensor platform successfully detected AIV nucleoproteins with a 0.38 pM limit of detection in buffer solution and 64 clinical samples. Hence, inorganic LnNP pairs may be effective for self-calibrating LRET systems in the background-free NIR region.


Assuntos
Técnicas Biossensoriais , Elementos da Série dos Lantanídeos , Nanopartículas , Animais , Transferência Ressonante de Energia de Fluorescência , Imunoensaio
3.
Adv Healthc Mater ; 9(13): e1901812, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32529747

RESUMO

Various cancer therapies have been developed, but tumor recurrence with incomplete tumor killing and remaining tumor cells/tissues is frequent in monotherapies. Herein, a nano-bio therapeutic emulsion formulated with multifunctional nanoscintillators and anaerobic Clostridium novyi-NT spores for synergistic image-guided combinational cancer therapy is reported. MRI visible nanoscintillators (NSs) are synthesized with a NaGdF4 :Tb,Ce@NaGdF4 core/shell structure for an image-guided X-ray photodynamic therapy (PDT) of the normoxic peripheral tumor. An anaerobic oncolytic bacterium (C. novyi-NT) therapy is combined to treat the hypoxic central tumor tissues. Photosensitizer-coated NSs (PS-NSs) and C. novyi-NT spores are emulsified with clinically available ethiodized oil (Lipiodol) to be the nano-bio therapeutic emulsion and injected into the tumor with computed tomography image guidance. The distribution of nano-bio therapeutic emulsion, including PS-NSs and anaerobic C. novyi-NT spores in the tumor site, is confirmed by both X-ray and T1 -weighted magnetic resonance imaging. Following the image-guided X-ray PDT and anaerobic C. novyi- NT combination treatment, apoptotic cell death in cancer tissues, including both peripheral and central tumor regions, is significantly higher than in the control groups. This combination therapy approach using a nano-bio therapeutic emulsion is expected to overcome the limitations of conventional cancer therapy, resulting in increased cancer-therapeutic efficacy.


Assuntos
Fotoquimioterapia , Microambiente Tumoral , Clostridium , Emulsões , Raios X
4.
Biosens Bioelectron ; 150: 111921, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31818754

RESUMO

Upconversion nanoparticles (UCNPs) are promising materials for biological applications based on luminescence resonance energy transfer (LRET). In contrast to classical RET donors such as quantum dots, gold nanoparticles, UCNPs can emit near-infrared (NIR) upon the NIR irradiation, which provides enhanced signal-to-noise due to strong penetration and low autofluorescence in the NIR region known as the diagnostic window. Here we report the first efficient NIR-to-NIR signal-based LRET system for the detection of progesterone, chosen as a proof-of-concept target, via homogeneous competitive immunoassay. To enhance the efficiency of LRET, we constructed inert-core/active-shell/inert-ultrathin shell UCNPs (NaYF4@NaYF4:Yb,Tm@NaYF4) as an LRET donor and a compact progesterone/horseradish peroxidase/IRdyeQC-1 (P-HRP-dyes) complex as an LRET acceptor. The designed donor and acceptor showed significantly improved LRET efficiencies (95% and 85% for donor and acceptor, respectively) compared with conventional donor and acceptor (70% and 50%, respectively). Using the developed NIR-to-NIR LRET system, progesterone was successfully detected with a background-free signal and low limit of detection (1.36 pg/ml in ten-fold diluted human serum). We believe that the efficient NIR-to-NIR signal-based LRET system developed here has potential as a simple probe for homogeneous competitive immunoassay, with the ability to rapidly detect biomarkers.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Fluoretos/química , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Progesterona/sangue , Ítrio/química , Transferência de Energia , Humanos , Imunoensaio/métodos , Raios Infravermelhos , Progesterona/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA