Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(49): 20242-20249, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009789

RESUMO

Unveiling the underlying chemistry during the growth of well-defined nanocrystals is a fundamental but challenging task in materials chemistry. Herein, Pd NCs with tunable sizes ranging from 4.5 to 23.5 nm have been synthesized in the presence of potassium acetate (KOAc). The Pd precursor variation trends of these preparation systems along with reaction time have been determined using a UV-vis spectrometer, and corresponding reduction kinetic parameters, including the apparent reduction rate constant (k) and activation energy (Ea), are calculated by regarding the reduction processes as quasi-first-order reactions. It is confirmed that the introduction of KOAc does not affect the value of the Ea of different reaction systems. The interrelationship of k, product size (d), and reaction temperature (T) is discussed in depth. Results indicate that the three parameters are closely related, and for given reaction systems, they are specified. With the careful investigation of six specific systems (reaction systems with 10 mM, 20 mM KOAc at 55 °C, with 5 mM, 10 mM KOAc at 65 °C, without KOAc at 75 °C, and with 5 mM KOAc at 85 °C), the growth pattern of Pd NCs is described with an empirical expression and is further confirmed as a synergistic result of k and T.

2.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903580

RESUMO

The rational regulation of catalyst active sites at atomic scale is a key approach to unveil the relationship between structure and catalytic performance. Herein, we reported a strategy for the controllable deposition of Bi on Pd nanocubes (Pd NCs) in the priority order from corners to edges and then to facets (Pd NCs@Bi). The spherical aberration-corrected scanning transmission electron microscopy (ac-STEM) results indicated that Bi2O3 with an amorphous structure covers the specific sites of Pd NCs. When only the corners and edges of the Pd NCs were covered, the supported Pd NCs@Bi catalyst exhibited an optimal trade-off between high conversion and selectivity in the hydrogenation of acetylene to ethylene under ethylene-rich conditions (99.7% C2H2 conversion and 94.3% C2H4 selectivity at 170 °C) with remarkable long-term stability. According to the H2-TPR and C2H4-TPD measurements, the moderate hydrogen dissociation and the weak ethylene adsorption are responsible for this excellent catalytic performance. Following these results, the selectively Bi-deposited Pd nanoparticle catalysts showed incredible acetylene hydrogenation performance, which provides a feasible perspective to design and develop highly selective hydrogenation catalysts for industrial applications.

3.
Small ; 14(5)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251420

RESUMO

Nitrogen-doped graphene (NG) with wrinkled and bubble-like texture is fabricated by a thermal treatment. Especially, a novel sonication-assisted pretreatment with nitric acid is used to further oxidize graphene oxide and its binding with melamine molecules. There are many bubble-like nanoflakes with a dimension of about 10 nm appeared on the undulated graphene nanosheets. The bubble-like texture provides more active sites for effective ion transport and reversible capacitive behavior. The specific surface area of NG (5.03 at% N) can reach up to 438.7 m2 g-1 , and the NG electrode demonstrates high specific capacitance (481 F g-1 at 1 A g-1 , four times higher than reduced graphene oxide electrode (127.5 F g-1 )), superior cycle stability (the capacitance retention of 98.9% in 2 m KOH and 99.2% in 1 m H2 SO4 after 8000 cycles), and excellent energy density (42.8 Wh kg-1 at power density of 500 W kg-1 in 2 m KOH aqueous electrolyte). The results indicate the potential use of NG as graphene-based electrode material for energy storage devices.

4.
ACS Omega ; 2(10): 6984-6990, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457281

RESUMO

Cs-Ce-Zr catalysts with various weight ratios are prepared by the sol-gel method in this paper. The main crystalline phases were identified by X-ray diffraction. The activities of catalysts during soot combustion were tested by thermogravimetric and differential scanning calorimetry. The contact conditions of soot/catalysts (sintered at 450 and 380 °C, respectively, under loose and tight contact conditions) were observed by scanning electron microscopy to study the effect of contact conditions on catalytic activity, and it was determined that the catalytic activities under tight contact conditions are superior to those under loose contact conditions. However, the soot oxidation rate speeds up after the peak temperature of about 450 °C under loose contact conditions, which is due to the fact that the contact condition is enhanced by melting CsNO3. The soot onset ignition temperature is lower for the catalysts with more Cs content under loose contact conditions. The minimum gaps of the soot onset ignition temperature and soot oxidation rates under the two contact conditions are 32 and 7 °C, which shows that the gap of catalytic activities under the respective contact conditions can be decreased by the formation of different crystalline phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA