Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sci Adv ; 9(6): eade0423, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763652

RESUMO

Biological compounds often provide clues to advance material designs. Replicating their molecular structure and functional motifs in artificial materials offers a blueprint for unprecedented functionalities. Here, we report a flexible biomimetic thermal sensing (BTS) polymer that is designed to emulate the ion transport dynamics of a plant cell wall component, pectin. Using a simple yet versatile synthetic procedure, we engineer the physicochemical properties of the polymer by inserting elastic fragments in a block copolymer architecture, making it flexible and stretchable. The thermal response of our flexible polymer outperforms current state-of-the-art temperature sensing materials, including vanadium oxide, by up to two orders of magnitude. Thermal sensors fabricated from these composites exhibit a sensitivity that exceeds 10 mK and operate stably between 15° and 55°C, even under repeated mechanical deformations. We demonstrate the use of our flexible BTS polymer in two-dimensional arrays for spatiotemporal temperature mapping and broadband infrared photodetection.

2.
ACS Appl Mater Interfaces ; 14(48): 54157-54169, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36413961

RESUMO

Silent communication based on biosignals from facial muscle requires accurate detection of its directional movement and thus optimally positioning minimum numbers of sensors for higher accuracy of speech recognition with a minimal person-to-person variation. So far, previous approaches based on electromyogram or pressure sensors are ineffective in detecting the directional movement of facial muscles. Therefore, in this study, high-performance strain sensors are used for separately detecting x- and y-axis strain. Directional strain distribution data of facial muscle is obtained by applying three-dimensional digital image correlation. Deep learning analysis is utilized for identifying optimal positions of directional strain sensors. The recognition system with four directional strain sensors conformably attached to the face shows silent vowel recognition with 85.24% accuracy and even 76.95% for completely nonobserved subjects. These results show that detection of the directional strain distribution at the optimal facial points will be the key enabling technology for highly accurate silent speech recognition.


Assuntos
Aprendizado Profundo , Percepção da Fala , Humanos , Músculos Faciais
3.
Sci Adv ; 8(15): eabm3622, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417230

RESUMO

Skin-attachable sensors, which represent the ultimate form of wearable electronic devices that ensure conformal contact with skin, suffer from motion artifact limitations owing to relative changes in position between the sensor and skin during physical activities. In this study, a polarization-selective structure of a skin-conformable photoplethysmographic (PPG) sensor was developed to decrease the amount of scattered light from the epidermis, which is the main cause of motion artifacts. The motion artifacts were suppressed more than 10-fold in comparison with those of rigid sensors. The developed sensor-with two orthogonal polarizers-facilitated successful PPG signal monitoring during wrist angle movements corresponding to high levels of physical activity, enabling continuous monitoring of daily activities, even while exercising for personal health care.

4.
ACS Appl Mater Interfaces ; 13(40): 47817-47825, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590813

RESUMO

The effects of the position of alkoxy side chains in quinoxaline (Qx)-based polymer acceptors (PAs) on the characteristics of materials and the device parameters of all-polymer solar cells (all-PSCs) are investigated. The alkoxy side chains are selectively located at the meta, para, and both positions in pendant benzenes of Qx units, constructing PAs denoted as P(QxCN-T2)-m, P(QxCN-T2)-p, and P(QxCN-T2), respectively. Among them, P(QxCN-T2)-m exhibits the deepest energy levels owing to the enhanced electron-withdrawing effect of meta-positioned alkoxy chains, which is in contrast to P(QxCN-T2)-p where para-positioned alkoxy chains have an electron-donating property. In addition, the meta-positioned alkoxy chains induce good electron-conducting pathways, while the para-positioned ones significantly interrupt crystallization and intermolecular interactions between the conjugated backbones. Thus, when the PAs are applied to all-PSCs, a power conversion efficiency (PCE) of 5.07% is attained in the device using P(QxCN-T2)-m with efficient exciton dissociation and good electron-transporting ability. On the contrary, the P(QxCN-T2)-p-based counterpart has a PCE of only 1.62%. These results demonstrate that introducing alkoxy side chains at a proper location in the Qx-based PAs is crucial for their application to all-PSCs.

5.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088675

RESUMO

Skin-like health care patches (SHPs) are next-generation health care gadgets that will enable seamless monitoring of biological signals in daily life. Skin-conformable sensors and a stretchable display are critical for the development of standalone SHPs that provide real-time information while alleviating privacy concerns related to wireless data transmission. However, the production of stretchable wearable displays with sufficient pixels to display this information remains challenging. Here, we report a standalone organic SHP that provides real-time heart rate information. The 15-µm-thick SHP comprises a stretchable organic light-emitting diode display and stretchable organic photoplethysmography (PPG) heart rate sensor on all-elastomer substrate and operates stably under 30% strain using a combination of stress relief layers and deformable micro-cracked interconnects that reduce the mechanical stress on the active optoelectronic components. This approach provides a rational strategy for high-resolution stretchable displays, enabling the production of ideal platforms for next-generation wearable health care electronics.

6.
ChemSusChem ; 14(17): 3520-3527, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33655716

RESUMO

Quinoxaline (Qx) derivatives are promising building units for efficient photovoltaic polymers owing to their strong light absorption and high charge-transport abilities, but they have been used exclusively in the construction of polymer donors. Herein, for the first time, Qx-based polymer acceptors (PA s) were developed by introducing electron-withdrawing cyano (CN) groups into the Qx moiety (QxCN). A series of QxCN-based PA s, P(QxCN-T2), P(QxCN-TVT), and P(QxCN-T3), were synthesized by copolymerizing the QxCN unit with bithiophene, (E)-1,2-di(thiophene-2-yl)ethene, and terthiophene, respectively. All of the PA s exhibited unipolar n-type characteristics with organic field-effect transistor (OFET) mobilities of around 10-2  cm2 V-1 s-1 . In space-charge-limited current devices, P(QxCN-T2) and P(QxCN-TVT) exhibited electron mobilities greater than 1.0×10-4  cm2 V-1 s-1 , due to the well-ordered structure with tight π-π stacking. When the PA s were applied in all-polymer solar cells (all-PSCs), the highest performance of 5.32 % was achieved in the P(QxCN-T2)-based device. These results demonstrate the significant potential of Qx-based PA s for high-performance all-PSCs and OFETs.

7.
ACS Appl Mater Interfaces ; 13(9): 11125-11133, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33630587

RESUMO

The control of molecular orientation and ordering of liquid crystal (LC) organic semiconductor (OSC) for high-performance and thermally stable organic thin-film transistors is investigated. A liquid crystalline molecule, 2-(4-dodecyl thiophenyl)[1]dibenzothiopheno[6,5-b:6',5'-f]-thieno[3,2-b]thiophene (C12-Th-DBTTT) is synthesized, showing the highly ordered smectic X (SmX) phase, demonstrating molecular reorganization via thermal annealing. The resulting thermally evaporated polycrystalline film and solution-sheared thin film show high charge carrier mobilities of 9.08 and 27.34 cm2 V-1 s-1, respectively. Atomic force microscopy and grazing-incidence X-ray diffraction analyses prove that the random SmA1-like structure (smectic monolayer) is reorganized to the highly ordered SmA2-like structure (smectic bilayer) of C12-Ph-DBTTT at the crystal-SmX transition temperature region. Because of the strong intermolecular interactions between rigid DBTTT cores, the thin film devices of C12-Th-DBTTT show excellent thermal stability up to 300 °C, indicating that LC characterization of conventional OSC materials can obtain high electrical performance as well as superior thermal durability.

8.
ACS Nano ; 14(11): 14493-14527, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33103903

RESUMO

Despite the recent breakthroughs of polymer solar cells (PSCs) exhibiting a power conversion efficiency of over 17%, toxic and hazardous organic solvents such as chloroform and chlorobenzene are still commonly used in their fabrication, which impedes the practical application of PSCs. Thus, the development of eco-friendly processing methods suitable for industrial-scale production is now considered an imperative research focus. This Review provides a roadmap for the design of efficient photoactive materials that are compatible with non-halogenated green solvents (e.g., xylenes, toluene, and tetrahydrofuran). We summarize the recent development of green processing solvents and the processing methods to match with the efficient photoactive materials used in non-fullerene solar cells. We further review progress in the use of more eco-friendly solvents (i.e., water or alcohol) for achieving truly sustainable and eco-friendly PSC fabrication. For example, the concept of water- or alcohol-dispersed nanoparticles made of conjugated materials is introduced. Also, recent important progress and strategies to develop water/alcohol-soluble photoactive materials that completely eliminate the use of conventional toxic solvents are discussed. Finally, we provide our perspectives on the challenges facing the current green processing methods and materials, such as large-area coating techniques and long-term stability. We believe this Review will inform the development of PSCs that are truly clean and renewable energy sources.

9.
Acc Chem Res ; 49(11): 2424-2434, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27753477

RESUMO

All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (PD) and acceptor (PA), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of PA, which affords simultaneous enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long PA chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional PA chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of PD and PA at the PD-PA interface greatly affect their free charge carrier generation efficiencies. The design of PA polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of PA, (2) the molecular packing structure and orientation of PA, and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of PA and its network, thus enabling high electron transport ability of PA comparable to that of fullerenes. Second, the molecular orientation of anisotropically structured PA should be favorably controlled in order to achieve efficient charge transport as well as charge transfer at the PD-PA interface. For instance, face-to-face stacking between PD and PA at the interface is desired for efficient free charge carrier generation because misoriented chains often cause an additional energy barrier for overcoming the binding energy of the charge transfer state. Third, large-scale phase separation often occurs in all-PSCs because of the significantly reduced entropic contribution by two macromolecular chains of PD and PA that energetically disfavors mixing. In this Account, we review the recent progress toward overcoming each recognized challenge and intend to provide guidelines for the future design of PA. We believe that by optimization of the parameters discussed above the PCE values of all-PSCs will surpass the 10% level in the near future and that all-PSCs are promising candidates for the successful realization of flexible and portable power generators.

10.
ACS Appl Mater Interfaces ; 8(41): 27911-27919, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27669058

RESUMO

This paper reports the distinct roles of Au and Ag nanoparticles (NPs) in organic light-emitting diodes (OLEDs) depending on their sizes. Au and Ag NPs that are 40 and 50 nm in size, respectively, are the most effective for enhancing the performance of green OLEDs. The external quantum efficiencies (EQEs) of green OLEDs doped with Au and Ag NPs (40 and 50 nm, respectively) are improved by 29.5% and 36.1%, respectively, while the power efficiencies (PEs) are enhanced by 47.9% and 37.5%, respectively. Furthermore, combining the Au and Ag NPs produces greater enhancements. The EQE and PE of the codoped OLEDs are improved by 63.9% and 68.8%, respectively, through the synergistic behavior of the different NPs. Finite-difference time-domain simulations confirm that the localized surface-plasmon resonance of the Au NPs near 580 nm improves the radiative recombination rate (krad) of green-light emitters locally (<50 nm), while the Ag NPs cause relatively long-range and broadband enhancements in krad. The simulations of various domain sizes verify that the light-extraction efficiency (LEE) can be enhanced by more than 4.2% by applying Ag NPs. Thus, size-controlled Au and Ag NPs can synergistically enhance OLEDs by improving both the internal quantum efficiency and LEE.

11.
Nat Commun ; 6: 8547, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449658

RESUMO

All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

12.
Adv Mater ; 27(15): 2466-71, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25735644

RESUMO

The effectiveness of side-chain engineering is demonstrated to produce highly efficient all-polymer solar cells (efficiency of 5.96%) using a series of naphthalene diimide-based polymer acceptors with controlled side chains. The dramatic changes in the polymer packing, blend morphology, and electron mobility of all-polymer solar cells elucidate clear trends in the photovoltaic performances.

13.
ACS Nano ; 9(3): 2773-82, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25688838

RESUMO

We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively.

14.
J Am Chem Soc ; 137(6): 2359-65, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25605316

RESUMO

The molecular weight of a conjugated polymer is one of the key factors determining the electrical, morphological, and mechanical properties as well as its solubility in organic solvents and miscibility with other polymers. In this study, a series of semicrystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) polymers with different number-average molecular weights (M(n)'s) (PPDT2FBT(L), M(n) = 12 kg/mol; PPDT2FBT(M), M(n) = 24 kg/mol; PPDT2FBT(H), M(n) = 40 kg/mol) were synthesized, and their photovoltaic properties as electron donors for all-polymer solar cells (all-PSCs) with poly[[N,N'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) acceptor were studied. The M(n) effect of PPDT2FBT on the structural, morphological, electrical, and photovoltaic properties was systematically investigated. In particular, tuning the M(n) induced dramatic effects on the aggregation behaviors of the polymers and their bulk heterojunction morphology of all-PSCs, which was thoroughly examined by grazing incident X-ray scattering, resonant soft X-ray scattering, and other microscopy measurements. High M(n) PPDT2FBT(H) promoted a strong "face-on" geometry in the blend film, suppressed the formation of an excessively large crystalline domain, and facilitated molecularly intermixed phases with P(NDI2OD-T2). Therefore, the optimized all-PSCs based on PPDT2FBT(H)/P(NDI2OD-T2) showed substantially higher hole and electron mobilities than those of PPDT2FBT(L)/P(NDI2OD-T2), leading to a power conversion efficiency exceeding 5%, which is one of the highest values for all-PSCs reported thus far.

15.
ACS Appl Mater Interfaces ; 6(23): 20776-85, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25393114

RESUMO

A series of aryl-substituted fullerene derivatives were prepared in which the aromatic moiety of [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) was modified by replacing the monocyclic phenyl ring with bicyclic naphthalene (NC61BM), tricyclic anthracene (AC61BM), and tetracyclic pyrene (PyC61BM). The PC61BM derivatives were synthesized from C60 using tosylhydrazone and were tested as electron acceptors in poly(3-hexylthiophene) (P3HT)-based organic photovoltaic cells (OPVs). The lowest unoccupied molecular orbital (LUMO) energy level of NC61BM (-3.68 eV) was found to be slightly higher than those of PC61BM (-3.70 eV), AC61BM (-3.75 eV), and PyC61BM (-3.72 eV). The electron mobility values obtained for the P3HT:PC61BM, P3HT:NC61BM, P3HT:AC61BM, and P3HT:PyC61BM blend films were 2.39 × 10(-4), 2.27 × 10(-4), 1.75 × 10(-4), and 2.13 × 10(-4) cm(2) V(-1) s(-1), respectively. P3HT-based bulk-heterojunction (BHJ) solar cells were fabricated using NC61BM, AC61BM, and PyC61BM as electron acceptors, and their performances were compared with that of the device fabricated using PC61BM. The highest power conversion efficiencies (PCEs) observed for devices fabricated with PC61BM, NC61BM, AC61BM, and PyC61BM were 3.80, 4.09, 1.14, and 1.95%, respectively, suggesting NC61BM as a promising electron acceptor for OPVs.

16.
ACS Nano ; 8(10): 10461-70, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25256674

RESUMO

While most high-efficiency polymer solar cells (PSCs) are made of bulk heterojunction (BHJ) blends of conjugated polymers and fullerene derivatives, they have a significant morphological instability issue against mechanical and thermal stress. Herein, we developed an architecturally engineered compatibilizer, poly(3-hexylthiophene)-graft-poly(2-vinylpyridine) (P3HT-g-P2VP), that effectively modifies the sharp interface of a BHJ layer composed of a P3HT donor and various fullerene acceptors, resulting in a dramatic enhancement of mechanical and thermal stabilities. We directly measured the mechanical properties of active layer thin films without a supporting substrate by floating a thin film on water, and the enhancement of mechanical stability without loss of the electronic functions of PSCs was successfully demonstrated. Supramolecular interactions between the P2VP of the P3HT-g-P2VP polymers and the fullerenes generated their universal use as compatibilizers regardless of the type of fullerene acceptors, including mono- and bis-adduct fullerenes, while maintaining their high device efficiency. Most importantly, the P3HT-g-P2VP copolymer had better compatibilizing efficiency than linear type P3HT-b-P2VP with much enhanced mechanical and thermal stabilities. The graft architecture promotes preferential segregation at the interface, resulting in broader interfacial width and lower interfacial tension as supported by molecular dynamics simulations.

17.
ACS Appl Mater Interfaces ; 6(19): 16956-65, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25226068

RESUMO

In this paper, we report and discuss our successful synthesis of monodispersed, polystyrene-coated gold core-shell nanoparticles (Au@PS NPs) for use in highly efficient, air-stable, organic light-emitting diodes (OLEDs) and organic photovoltaics (OPVs). These core-shell NPs retain the dual functions of (1) the plasmonic effect of the Au core and (2) the stability and solvent resistance of the cross-linked PS shell. The monodispersed Au@PS NPs were incorporated into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film that was located between the ITO substrate and the emitting layer (or active layer) in the devices. The incorporation of the Au@PS NPs provided remarkable improvements in the performances of both OLEDs and OPVs, which benefitted from the plasmonic effect of the Au@PS NPs. The OLED device with the Au@PS NPs achieved an enhancement of the current efficiency that was 42% greater than that of the control device. In addition, the power conversion efficiency was increased from 7.6% to 8.4% in PTB7:PC71BM-based OPVs when the Au@PS NPs were embedded. Direct evidence of the plasmonic effect on optical enhancement of the device was provided by near-field scanning optical microscopy measurements. More importantly, the Au@PS NPs induced a remarkable and simultaneous improvement in the stabilities of the OLED and OPV devices by reducing the acidic and hygroscopic properties of the PEDOT:PSS layer.

18.
ACS Macro Lett ; 3(10): 1009-1014, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35610784

RESUMO

We report highly efficient all-polymer solar cells with power conversion efficiencies of over 4.5% by highly intermixed blends of PTB7-Th donor and P(NDI2OD-T2) acceptor polymers. The low interfacial tension and the face-on π-π stackings of the all-polymer blends afforded desired nanophase morphology, which facilitates efficient charge transport from the active layer to each electrode. In addition, the incorporation of 1,8-diiodooctane additives was able to tune the degree of crystallinity and orientation of P(NDI2OD-T2) acceptors, resulting in remarkable enhancement of electron mobility, external quantum efficiency, and JSC values.

19.
ACS Appl Mater Interfaces ; 5(24): 12820-31, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23905751

RESUMO

Two semiconducting conjugated polymers were synthesized via Stille polymerization. The structures combined unsubstituted or (triisopropylsilyl)ethynyl (TIPS)-substituted 2,6-bis(trimethylstannyl)benzo[1,2-b:4.5-b']dithiophene (BDT) as a donor unit and benzotriazole with a symmetrically branched alkyl side chain (DTBTz) as an acceptor unit. We investigated the effects of the different BDT moieties on the optical, electrochemical, and photovoltaic properties of the polymers and the film crystallinities and carrier mobilities. The optical-band-gap energies were measured to be 1.97 and 1.95 eV for PBDT-DTBTz and PTIPSBDT-DTBTz, respectively. Bulk heterojunction photovoltaic devices were fabricated and power conversion efficiencies of 5.5% and 2.9% were found for the PTIPSBDT-DTBTz- and PBDT-DTBTz-based devices, respectively. This difference was explained by the more optimal morphology and higher carrier mobility in the PTIPSBDT-DTBTz-based devices. This work demonstrates that, under the appropriate processing conditions, TIPS groups can change the molecular ordering and lower the highest occupied molecular orbital level, providing the potential for improved solar cell performance.


Assuntos
Polímeros/química , Energia Solar , Tiofenos/química , Triazóis/química , Técnicas Eletroquímicas , Fulerenos/química , Poliestirenos/química , Teoria Quântica , Análise Espectral Raman , Compostos de Estanho/química
20.
ACS Appl Mater Interfaces ; 5(10): 4401-8, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23574307

RESUMO

Fullerene tris-adducts have the potential of achieving high open-circuit voltages (V(OC)) in bulk heterojunction (BHJ) polymer solar cells (PSCs), because their lowest unoccupied molecular orbital (LUMO) level is higher than those of fullerene mono- and bis-adducts. However, no successful examples of the use of fullerene tris-adducts as electron acceptors have been reported. Herein, we developed a ternary-blend approach for the use of fullerene tris-adducts to fully exploit the merit of their high LUMO level. The compound o-xylenyl C60 tris-adduct (OXCTA) was used as a ternary acceptor in the model system of poly(3-hexylthiophene) (P3HT) as the electron donor and the two soluble fullerene acceptors of OXCTA and fullerene monoadduct (o-xylenyl C60 monoadduct (OXCMA), phenyl C61-butyric acid methyl ester (PCBM), or indene-C60 monoadduct (ICMA)). To explore the effect of OXCTA in ternary-blend PSC devices, the photovoltaic behavior of the device was investigated in terms of the weight fraction of OXCTA (W(OXCTA)). When W(OXCTA) is small (<0.3), OXCTA can generate a synergistic bridging effect between P3HT and the fullerene monoadduct, leading to simultaneous enhancement in both V(OC) and short-circuit current (J(SC)). For example, the ternary PSC devices of P3HT:(OXCMA:OXCTA) with W(OXCTA) of 0.1 and 0.3 exhibited power-conversion efficiencies (PCEs) of 3.91% and 3.96%, respectively, which were significantly higher than the 3.61% provided by the P3HT:OXCMA device. Interestingly, for W(OXCTA) > 0.7, both V(OC) and PCE of the ternary-blend PSCs exhibited nonlinear compositional dependence on W(OXCTA). We noted that the nonlinear compositional trend of P3HT:(OXCMA:OXCTA) was significantly different from that of P3HT:(OXCMA:o-xylenyl C60 bis-adduct (OXCBA)) ternary-blend PSC devices. The fundamental reasons for the differences between the photovoltaic trends of the two different ternary-blend systems were investigated systemically by comparing their optical, electrical, and morphological properties.


Assuntos
Técnicas Eletroquímicas/métodos , Fulerenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA