RESUMO
Skeletal muscle atrophy was one of main complications of type 2 diabetes mellitus. Hydrogen sulfide (H2S) is involved in various physiological functions, such as anti-hypertension and anti-oxidant. Skeletal muscle atrophy caused by type 2 diabetes could lead to the regeneration of muscle fibers. Wnt signaling pathway plays a crucial important role in this process. H2S maybe regulate the Wnt signaling pathway to alleviate skeletal muscle atrophy, however, this role has not been clarified. The aim of this study is to investigate the potential regulatory role of H2S in the Wnt signaling pathway. C2C12 myoblasts treated with 500 µmol palmitate as an in vitro model. Western blot was used to detect the levels of CSE, PKM1, ß-catenin, MuRF1, MYOG, MYF6 and MYOD1. In addition, MuRF1 was mutated at Cys44 and MuRF1 S-sulfhydration was detected by biotin switch assay. The interaction between PKM1 and MuRF1 was assessed via Co-immunoprecipitation. Differentiation of C2C12 myoblasts was evaluated using LAMININ staining. These data showed the levels of CSE, ß-catenin, PKM1, MYOG, MYF6 and MYOD1 were decreased in pal group, compared with control and pal + NaHS groups. MuRF1 Cys44 mutants increased the protein levels of ß-catenin, MYOG, MYF6 and MYOD1 in pal group. Our results suggest that H2S regulates the S-sulfhydration levels of MuRF1 at Cys44, influencing the ubiquitination levels of PKM1 and ultimately promoting myoblast differentiation.
RESUMO
There exists an interplay between borane and a Lewis base in their adducts. However, studies on these adducts so far have mainly focused on the different reactions of B-H bonds with limited attention given to the influence of borane on the chemistry of the Lewis base, except for BF3 and BAr3. Herein, we have synthesized novel borane adducts with pyridine derivatives, Py·B3H7, in which the coordination of B3H7 efficiently achieved the intra-molecular charge transfer. The strong B-N bond in these adducts resulted in the formation of stable dearomatic intermediates of pyridine derivatives, confirmed by 1H and 11B NMR spectroscopy, from which different reactions have transpired to realize C(sp3)-H and C(sp2)-H functionalization under mild conditions. The B3H7 pyridine derivatives are stable and do not dissociate or decompose during the reaction process. The high stability of the B-N bond makes this method a good option for boron-containing drugs with potential for use in boron neutron capture therapy (BNCT).
RESUMO
Soft tissue integration around titanium (Ti) implants is weaker than that around natural teeth, compromising long-term success of Ti implants. Carbon monoxide (CO) possesses distinctive therapeutic properties, rendering it as a highly promising candidate for enhancing STI. However, achieving controlled CO generation at the STI interface remains challenging. Herein, a controlled CO-releasing dual-function coating was constructed on Ti surfaces. Under near-infrared (NIR) irradiation, the designed surface could actively accelerate CO generation for antibiosis against both aerobic and anaerobic bacteria. More importantly, in the absence of NIR, the slow release of CO induces macrophage polarization from pro-inflammatory phenotype towards pro-regenerative phenotype. In a rat implantation model with induced infection, the designed surface effectively controlled the bacterial infection, alleviates accompanying inflammation and modulated immune microenvironment, leading to enhanced STI. Single-cell sequencing revealed that the coating alters the cytokine profile within the soft tissue, thereby influencing cellular functions. Differentially expressed genes in macrophages are highly enriched in the PIK3-Akt pathway. Furthermore, the cellular communication between fibroblasts and macrophages was significantly enhanced through the CXCL12/CXCL14/CXCR4 and CSF1-CSF1R ligand-receptor pair. These findings indicate that our coating showed an appealing prospect for enhancing STI around Ti implants, which would ultimately contribute to the improved long-term success of Ti implants.
RESUMO
Solid-state sodium metal batteries have been extensively investigated because of their potential to improve safety, cost-effectiveness, and energy density. The development of such batteries urgently required a solid-state electrolyte with fast Na-ion conduction and favorable interfacial compatibility. Herein, the progress on developing the NaB3H8 solid-state electrolytes is reported, which show a liquid-like ionic conductivity of 0.05 S cm-1 at 56 °C with an activation energy of 0.35 eV after an order-disorder phase transformation, matching or surpassing the best single-anion hydridoborate conductors investigated up to now. The steady polarization voltage and significantly decreased resistance are achieved in the symmetric Na/NaB3H8/Na cell, indicating the great electrochemical stability and favorable interfacial contact with the Na metal of NaB3H8. Furthermore, a Na/NaB3H8/TiS2 battery, the first high-rate (up to 1 C) solid-state sodium metal battery using the single-anion hydridoborate electrolyte, is demonstrated, which exhibits superior rate capability (168.2 mAh g-1 at 0.1 C and 141.2 mAh g-1 at 1 C) and long-term cycling stability (70.9% capacity retention at 1 C after 300 cycles) at 30 °C. This work may present a new possibility to solve the interfacial limitations and find a new group of solid-state electrolytes for high-performance sodium metal batteries.
RESUMO
The reduction mechanism of aldehyde/ketones with M(BH4)n is not fully understood, even though the hydroboration mechanism of weak Lewis base borane complexes is known to involve a four-membered ring transition state. Herein, the reduction mechanism of M(BH4)n in aprotic solvents has been elucidated for a six-membered ring, in which hydride transfer to the C atom from the B atom, formation of an L·BH3 adduct, and disproportionation of (BH3(OR)-) borane are involved. The metal cations and solvents participate in and significantly influence the reaction procedure. We believe that this mechanistic study would provide a further reference for the application of M(BH4)n in organic reactions.
RESUMO
Anomalous vascular endothelium significantly contributes to various cardiovascular diseases. VE-cadherin plays a vital role in governing the endothelial barrier. Krüppel-like factor 4(KLF4), as a transcription factor, which binds the VE-cadherin promoter and enhances its transcription. Tumor necrosis factor receptor-associated factor 7 (TRAF7) is an E3 ubiquitin ligase that has been shown to modulate the degradation of KLF4. H2S can covalently modify cysteine residues on proteins through S-sulfhydration, thereby influencing the structure and functionality of the target protein. However, the role of S-sulfhydration on endothelial barrier integrity remains to be comprehensively elucidated. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates endothelial integrity and its underlying mechanism. In this study, we observed that protein S-sulfhydration was reduced in the endothelium during diabetes and TRAF7 was the main target. Overexpression of TRAF7-Cys327 mutant could mitigate the endothelial barrier damage by weakening TRAF7 interaction with KLF4 and reducing ubiquitination degradation of KLF4. In conclusion, our research demonstrates that H2S plays a pivotal role in regulating S-sulfhydration of TRAF7 at Cys327. This regulation effectively inhibits the ubiquitin-mediated degradation of KLF4, resulting in an upregulation of VE-cadherin levels. This molecular mechanism contributes to the prevention of endothelial barrier damage.
Assuntos
Diabetes Mellitus , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Ubiquitinação , Regulação da Expressão Gênica , Endotélio Vascular/metabolismo , Ubiquitina/metabolismo , Diabetes Mellitus/metabolismoRESUMO
All-solid-state potassium metal batteries have been considered promising candidates for large-scale energy storage because of abundance and wide availability of K resources, elimination of flammable liquid organic electrolytes, and incorporation of high-capacity K metal anode. However, unideal K-ion conductivities of most reported K-ion solid electrolytes have restricted the development of these batteries. Herein, a novel K2B10H10·CO(NH2)2 complex is reported, forming by incorporating urea into K2B10H10, to achieve an enhanced K-ion conductivity. The crystal structure of K2B10H10·CO(NH2)2 was determined as a monoclinic lattice with the space group of C2/c (No. 15). K2B10H10·CO(NH2)2 delivers an ionic conductivity of 2.7 × 10-8 S cm-1 at 25 °C, and reaching 1.3 × 10-4 S cm-1 at 80 °C, which is about 4 orders of magnitude higher than that of K2B10H10. One possible reason is the anion expansion in size due to the presence of dihydrogen bonds in K2B10H10·CO(NH2)2, resulting in an increase in the K-H bond distance and the electrostatic potential, thereby enhancing the mobility of K+. The K-ion conductivity is also higher than those of most hydridoborate-based K-ion conductors reported. Besides, K2B10H10·CO(NH2)2 reveals a wide electrochemical stability window and remarkable interface compatibility with K metal electrodes, suggesting a promising electrolyte for all-solid-state K metal batteries.
RESUMO
BACKGROUND: Whey protein isolate (WPI) nanoparticles can be used in a strategy to improve the bioavailability of curcumin (CUR) although they are generally not stable. Previous studies have indicated that Tremella fuciformis polysaccharides (TFPs) can increase the stability of WPI. This work investigated systematically the characterization and structure of TFP/WPI nanoparticles with differing CUR content. RESULTS: The highest encapsulation efficiency of CUR was 98.8% and the highest loading content was 47.88%. The TFP-WPI-CUR with 20 mg mL-1 of CUR had the largest particle size (653.67 ± 21.50 nm) and lowest zeta potential (-38.97 ± 2.51 mV), and the capacity to retain stability across a variety of salt ion and pH conditions for 21 days. According to the findings of the structural analysis, the addition of TFPs and CUR rendered the structure of WPI amorphous, and the ß-sheet was reduced. Finally, in vitro release indicated that the TFP-WPI-CUR combination could regulate the sustained release behavior of CUR. CONCLUSION: In summary, TFP-WPI nanoparticles can be used as carriers for the delivery of CUR, and can expand applications of CUR in the functional food, dietary supplement, pharmaceutical, and beverage industries. © 2023 Society of Chemical Industry.
Assuntos
Curcumina , Nanopartículas , Curcumina/química , Proteínas do Soro do Leite/química , Preparações de Ação Retardada , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/químicaRESUMO
Excessive ROS accumulation contributes to cardiac injury in type 2 diabetes mellitus. Hydrogen sulfide (H2S) is a vital endogenous gasotransmitter to alleviate cardiac damage in diabetic cardiomyopathy (DCM). However, the underlying mechanisms remain unclear. In this study, we investigated the effects of NaHS administration in db/db mice via intraperitoneal injection for 20 weeks and the treatment of high glucose (HG), palmitate (PA) and NaHS in HL-1 cardiomyocytes for 48 h, respectively. H2S levels were decreased in hearts of db/db mice and HL-1 cardiomyocytes exposed to HG and PA, which were restored by NaHS. Exogenous H2S activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/glutathione (GSH) pathway, suppressed ferroptosis and mitigated mitochondrial apoptosis in db/db mice. However, these effects were abrogated after Nrf2 knockdown. NaHS treatment elevated the ubiquitination level of Kelch-like ECH-associated protein (Keap1) by preserving its E3 ligase synoviolin (Syvn1), resulting in Nrf2 nuclear translocation. H2S facilitated the sulfhydration of Syvn1-cys115 site, a post-translational modification. Transfecting Syvn1 C115A in cardiomyocytes exposed to HG and PA partially attenuated the effects of NaHS on Nrf2 and cell death. Our findings suggest that exogenous H2S regulates Nrf2/GPx4/GSH pathway by promoting the Syvn1-Keap1 interaction to reduce ferroptosis and mitochondrial apoptosis in DCM.
RESUMO
L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.
Assuntos
Citocinas , Glutamatos , Animais , Glutamatos/química , Imunidade , Chá/químicaRESUMO
In the original publication [...].
RESUMO
Organic acids account for around 3% of the dry matter in tea leaves, and their composition and contents vary in different types of tea. They participate in the metabolism of tea plants, regulate nutrient absorption and growth, and contribute to the aroma and taste quality of tea. Compared with other secondary metabolites in tea, the researches on organic acids are still limited. This article reviewed the research progresses of organic acids in tea, including analysis methods, the root secretion and physiological function, the composition of organic acids in tea leaves and related influencing factors, the contribution of organic acids to sensory quality, and the health benefits, such as antioxidation, promotion of digestion and absorption, acceleration of gastrointestinal transit, and regulation of intestinal flora. It is hoped to provide references for related research on organic acids from tea.
Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Folhas de Planta/química , Compostos Orgânicos Voláteis/análise , Odorantes , Chá/químicaRESUMO
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus that eventually progresses to heart failure. The sarco(endo)plasmic reticulum calcium ATPase 2a (SERCA2a), an important calcium pump in cardiomyocytes, is closely related to myocardial systolic-diastolic function. In mammalian cells, hydrogen sulfide (H2S), as a second messenger, antioxidant, and sulfurizing agent, is involved in diverse biological processes. Despite the importance of H2S for protection against DCM, the mechanisms remain poorly understood. The aim of the present study was to determine whether H2S regulates intracellular calcium homeostasis by acting on SERCA2a to reduce cardiomyocyte apoptosis during DCM. Db/db mice were injected with NaHS for 18 weeks. Neonatal rat cardiomyocytes (NRCMs) were treated with high glucose, palmitate, oleate, and NaHS for 48 h. Compared to the NaHS-treated groups, in vivo and in vitro type 2 diabetic models both showed reduced intracellular H2S content, reduced cystathionine γ-lyase (CSE) expression, impaired cardiac function, decreased SERCA2a expression and decreased SERCA2a activity, reduced SUMOylation of SERCA2a, increased sentrin-specific protease 1 (SENP1) expression, and disruption of calcium homeostasis leading to activation of the mitochondrial apoptosis pathway. Compared to the NaHS-treated type 2 diabetes cellular model, overexpression of SENP1 C683A reduced the S-sulfhydration of SENP1, reduced the SUMOylation of SERCA2a, reduced the increased expression and activity of SERCA2a, and induced mitochondrial apoptosis in cardiomyocytes. These results suggested that exogenous H2S elevates SENP1 S-sulfhydration to increase SERCA2a SUMOylation, improve myocardial systolic-diastolic function, and decrease cardiomyocyte apoptosis in DCM.
Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Sulfeto de Hidrogênio , Animais , Camundongos , Ratos , Cálcio/metabolismo , Cisteína Endopeptidases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Diástole , Endopeptidases/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Mamíferos , Miócitos Cardíacos/metabolismo , Peptídeo Hidrolases/metabolismo , Sumoilação , SístoleRESUMO
Obesity, along with type 2 diabetes mellitus (T2DM), is a major contributor to hypertension. The renin-angiotensin-aldosterone system is involved in the occurrence of diabetes and hypertension. However, the mechanism by which obesity is related to T2DM induced hypertension is unclear. In this study, we observed that blood pressure and serum renin content were increased in patients with diabetes and hypertension. Hydrogen sulfide (H2S), as an endogenous bioactive molecule, has been shown to be a vasodilator. Db/db mice, characterized by obesity and T2DM, and juxtaglomerular (JG) cells, which line the afferent arterioles at the entrance of the glomeruli to produce renin, treated with glucose, palmitic acid (PA) and oleic acid (OA), were used as animal and cellular models. NaHS, the H2S donor, was administered to db/db mice through intraperitoneal injection. NaHS significantly alleviated blood pressure in db/db mice, decreased the renin content in the serum of db/db mice and reduced renin secretion from JG cells. NaHS modulated renin release via cAMP and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), including synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2), which mediate renin exocytosis. Furthermore, NaHS increased the levels of autophagy-related proteins and colocalization with EGFP-LC3 puncta with renin-containing granules and VAMP2 to consume excessive renin to maintain intracellular homeostasis. Therefore, exogenous H2S attenuates renin release and promotes renin-vesicular autophagy to relieve diabetes-induced hypertension.
Assuntos
Diabetes Mellitus Tipo 2 , Sulfeto de Hidrogênio , Hiperglicemia , Hipertensão , Camundongos , Animais , Renina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Proteína 2 Associada à Membrana da Vesícula , Hiperglicemia/complicações , Hipertensão/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , ExocitoseRESUMO
The cage-opening functionalization of stable closo-B10H102- salts is a great way to get various boron clusters. However, the known methods to mediate cage-opening functionalization rely on the use of strong acids, which suffer from low efficiency and narrow substrate scope. Herein, an efficient method to synthesize 6-substituted decaboranyl ethers and sulfides has been developed. The reaction was mediated by trimethylsilyl trifluoromethanesulfonate (TMSOTf) and occurred at room temperature. Six 6-substituted ethers were obtained in 65-92% yields and five 6-substituted sulfides were prepared in 38-58% yields. The reaction had excellent regioselectivity, affording the single B(6) regioisomer in all cases. The interaction between the B-H bonds of the boron cage and the silylium ion was believed to be the key factor in the reaction.
RESUMO
SET domain-containing 2 (SETD2) is a methyltransferase that can catalyze the di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/me3). SETD2 frequently mediates H3K36me3 modification to regulate both oocyte maturation and preimplantation embryonic development in mice. However, the specific substrate and function of SETD2 in porcine early embryonic development are still unclear. In this study, SETD2 preferentially catalyzed H3K36me3 to regulate porcine early embryonic development. SETD2 mRNA is dynamically expressed during early embryonic development. Functional studies using an RNA interference (RNAi) approach revealed that the expression levels of SETD2 mRNA were effectively knocked down by siRNA microinjection. Immunofluorescence analysis indicated that SETD2 knockdown (KD) did not affect H3K36me2 modification but significantly reduced H3K36me3 levels, suggesting a preferential H3K36me3 recognition of SETD2 in porcine embryos. Furthermore, SETD2 KD significantly reduced blastocyst rate and disrupted allocation between inner cell mass (ICM) and trophectoderm (TE) lineage. The expression levels of key genes important for specification of the first two lineages apparently decreased in SETD2 KD blastocysts. SETD2 KD markedly increased the apoptotic percentage of cells within embryos and altered the expression of pro- and anti-apoptotic genes. Therefore, our data indicate that SETD2 is essential for porcine early embryonic development.
RESUMO
Glucose-dependent insulinotropic polypeptide (GIP) is one of the important incretins and possesses lots of physiological activities such as stimulating insulin secretion and maintaining glucose homeostasis. The pentacyclic triterpenoid saponins are the major active ingredients in tea (Camellia sinensis) seeds. This study aimed to investigate the effect of tea seed saponins on the GIP secretion and related mechanisms. Our data showed that the total tea seed saponins (TSS, 65 mg/kg BW) and theasaponin E1 (TSE1, 2-4 µM) could increase the GIP mRNA and protein levels in mice and STC-1 cells. Phlorizin, the inhibitor of Sodium/glucose cotransporter 1 (SGLT1), reversed the TSE1-induced increase in Ca2+ and GIP mRNA level. In addition, TSE1 upregulated the protein expression of Takeda G protein-coupled receptor 5 (TGR5), and TGR5 siRNA significantly decreased GIP expression in TSE1-treated STC-1 cells. Network pharmacology analysis revealed that six proteins and five signaling pathways were associated with SGLT1, TGR5 and GIP regulated by TSE1. Taken together, tea seed saponins could stimulate GIP expression via SGLT1 and TGR5, and were promising natural active ingredients for improving metabolism and related diseases.
Assuntos
Camellia sinensis , Polipeptídeo Inibidor Gástrico , Saponinas , Animais , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Camundongos , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Saponinas/farmacologia , Sementes/metabolismo , CháRESUMO
The design, synthesis, and applications of new boranes are eternal topics in boron chemistry. A new bis(borane)alkanethiolate salt, K[BH3S(CH3)BH3], was synthesized in high yield by the reaction of K with (CH3)2S·BH3 at room temperature. The formation mechanism was elucidated based on experimental and theoretical studies. The single-crystal structure of the K[BH3S(CH3)BH3]·18-crown-6 adduct was determined in which the B-S-B bonding information of K[BH3S(CH3)BH3] was illustrated for the first time. Using K[BH3S(CH3)BH3] as a starting material, KB3H8 was successfully synthesized.
RESUMO
The coordination mode of the BH4- ligand in transition metal tetrahydroborate complexes is mainly dominated by the nature of the metal centres. However, other factors can also play important roles sometimes. In order to rationalize the coordination modes and the stability of the BH4- ligand in group 10 metal tetrahydroborate pincer complexes, [2,6-(tBu2PO)2C6H3]Pt(η1-HBH3) and [C6H4-o-(NCH2PtBu2)2B]M(η2-H2BH2) (M = Ni, Pt) were prepared and characterized. A structural comparison of [2,6-(tBu2PCH2)2C6H3]Ni(BH4), [2,6-(tBu2PO)2C6H3]M(BH4) and [C6H4-o-(NCH2PtBu2)2B]M(BH4) (M = Ni, Pd, and Pt) indicates that the M-P bond length, the P-M-P bite angle and the trans-influence of the central atom in the pincer platform also affect the coordination mode of the BH4- ligand. The nickel complexes tend to adopt a monodentate coordination mode while the palladium and platinum complexes can adopt either the monodentate or the bidentate mode depending on the structural features of the pincer platforms. Longer M-P bonds and smaller P-M-P bite angles favour the bidentate mode. The stability of the BH4- ligand is influenced by both the coordination mode and the nature of the metal centre. The BH3 species is released more easily from complexes with less electron rich metal centres. Following the series of Ni, Pd, and Pt, complexes with the same pincer ligand more easily lose a BH3 moiety.
RESUMO
Triterpene saponins exhibit various biological and pharmacological activities. However, the knowledge on saponin biosynthesis in tea plants (Camellia sinensis L.) is still limited. In this work, tea flower and seed samples at different developmental stages and leaves were collected and analyzed with UPLC-PDA-MS and RNA sequencing for saponin determination and transcriptome comparison. The saponin content reached around 19% in the freshly mature seeds and 7% in the green flower buds, and decreased with the fruit ripeness and flower blooming. Almost no saponins were detected in leaf samples. PCA and KEGG analysis suggested that the gene expression pattern and secondary metabolism in TF1 and TS2 vs. leaf samples were significantly different. Weighted gene coexpression network analysis (WGCNA) uncovered two modules related to saponin content. The mevalonate (MVA) instead of 2-C-methyl-d-erythritol-4-phospate (MEP) pathway was responsible for saponin accumulation in tea plants, and 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), diphosphomevalonate decarboxylase (MVD) and isopentenyl diphosphate isomerase (IDI) may be the key enzymes involved in saponin biosynthesis in tea seeds and flowers. Moreover, ten transcription factors (TFs) were predicted to regulate saponin biosynthesis in the tea plant. Taken together, our study provides a global insight into the saponin biosynthesis and accumulation in the tea plant.