RESUMO
BACKGROUND: Few normative longitudinal hemoglobin data are available to estimate the prevalence and risk factors for anemia among a multiethnic United States pregnant population. OBJECTIVES: The aim of this study was to characterize hemoglobin distributions and prevalence of anemia in a pregnant population receiving care at a large urban medical center. METHODS: A retrospective medical chart review was undertaken in 41,226 uncomplicated pregnancies of 30,603 pregnant individuals who received prenatal care between 2011 and 2020. Mean hemoglobin concentrations and anemia prevalence in each trimester and incidence of anemia during pregnancy in a subset of 4821 women with data in each trimester were evaluated in relation to self-reported race and ethnicity and other possible risk factors. Risk ratios (RRs) of anemia were determined using generalized linear mixed-effects models. Smoothed curves describing changes in hemoglobin across pregnancy were created using generalized additive models. RESULTS: The overall prevalence of anemia was 26.7%. The observed fifth percentiles of the hemoglobin distributions were significantly lower than the United States CDC anemia cutoffs in the second and third trimesters (T3). The RR (95% CI) of anemia were 3.23 (3.03, 3.45), 6.18 (5.09, 7.52), and 2.59 (2.48, 2.70) times higher in Black women than that in White women in each trimester, respectively. Asian women recorded the lowest risk of anemia compared with other racial groups in T3 (compared with White womenRR: 0.84; 95% CI: 0.74, 0.96). Hispanic women presented a higher risk of anemia in T3 than non-Hispanic women (RR: 1.36; 95% CI: 1.28, 1.45). In addition, adolescents, individuals with higher parity, and those carrying multiple fetuses experienced a higher risk of developing anemia in late gestation. CONCLUSIONS: Anemia was evident in more than one-quarter of a multiethnic United States pregnant population despite current universal prenatal iron supplementation recommendations. Prevalence of anemia was higher among Black women and lowest among Asian and White women.
Assuntos
Anemia , Adolescente , Gravidez , Feminino , Estados Unidos/epidemiologia , Humanos , Estudos Retrospectivos , Prevalência , Anemia/epidemiologia , Hemoglobinas , ParidadeRESUMO
Iron is unique among all minerals in that humans have no regulatable excretory pathway to eliminate excess iron after it is absorbed. Iron deficiency anemia occurs when absorbed iron is not sufficient to meet body iron demands, whereas iron overload and subsequent deposition of iron in key organs occur when absorbed iron exceeds body iron demands. Over time, iron accumulation in the body can increase risk of chronic diseases, including cirrhosis, diabetes, and heart failure. To date, only â¼30% of the interindividual variability in iron absorption can be captured by iron status biomarkers or iron regulatory hormones. Much of the regulation of iron absorption may be under genetic control, but these pathways have yet to be fully elucidated. Genome-wide and candidate gene association studies have identified several genetic variants that are associated with variations in iron status, but the majority of these data were generated in European populations. The purpose of this review is to summarize genetic variants that have been associated with alterations in iron status and to highlight the influence of ethnicity on the risk of iron deficiency or overload. Using extant data in the literature, linear mixed-effects models were constructed to explore ethnic differences in iron status biomarkers. This approach found that East Asians had significantly higher concentrations of iron status indicators (serum ferritin, transferrin saturation, and hemoglobin) than Europeans, African Americans, or South Asians. African Americans exhibited significantly lower hemoglobin concentrations compared with other ethnic groups. Further studies of the genetic basis for ethnic differences in iron metabolism and on how it affects disease susceptibility among different ethnic groups are needed to inform population-specific recommendations and personalized nutrition interventions for iron-related disorders.
Assuntos
Anemia Ferropriva , Sobrecarga de Ferro , Etnicidade , Ferritinas , Humanos , FerroRESUMO
BACKGROUND: Heavy parasitic loads increase the risk of iron (Fe) deficiency anemia, which remains prevalent globally. Where parasites are common, understanding the influence of parasitic infections on Fe incorporation and erythropoiesis in toddlers is especially important. OBJECTIVES: The aim of this study was to identify the impacts of malarial and helminth infections on red blood cell (RBC) Fe incorporation and subsequent changes in RBC Fe isotope enrichment for 84 days postdosing in toddlers at high risk for parasitic infections. METHODS: Fe incorporation was measured in a group of Zanzibari toddlers (n = 71; 16-25 months) using a stable Fe isotopic method. At study entry, an oral stable Fe isotope was administered. Blood was collected 14 (D14) and 84 (D84) days postdosing for the assessment of Fe status indicators and RBC isotopic enrichment. Blood and stool samples were collected and screened for malaria and helminth parasites. Factors associated with changes in RBC Fe isotope enrichment were identified using regression models. RESULTS: Toddlers who had larger weight-for-age z-scores, lower total body Fe, and helminth infections (n = 26) exhibited higher RBC Fe incorporation. RBC Fe isotope enrichment decreased from D14 to D84 by -2.75 percentage points (P < 0.0001; n = 66). Greater loss in RBC Fe isotope enrichment from D14 to D84 was observed in those who received Fe supplementation, those with either helminths or both malarial and helminth infections, and in those with greater RBC Fe incorporation on D14. CONCLUSIONS: Toddlers who received Fe supplementation exhibited significantly greater losses of RBC Fe isotope enrichment over time. We speculate this greater loss of RBC Fe enrichment is indicative of increased erythropoiesis due to the provision of Fe among anemic or helminth-infected toddlers.