Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
2.
EMBO Rep ; 24(8): e56430, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37272231

RESUMO

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo
3.
J Mol Biol ; 434(2): 167361, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34808225

RESUMO

MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Succinato Desidrogenase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Linhagem Celular Tumoral , DNA Mitocondrial , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , MicroRNAs/genética , Neoplasias/metabolismo , Osteossarcoma , Transdução de Sinais , Succinato Desidrogenase/genética
4.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34313317

RESUMO

The mitochondrial inner membrane is a protein-rich environment containing large multimeric complexes, including complexes of the mitochondrial electron transport chain, mitochondrial translocases and quality control machineries. Although the inner membrane is highly proteinaceous, with 40-60% of all mitochondrial proteins localised to this compartment, little is known about the spatial distribution and organisation of complexes in this environment. We set out to survey the arrangement of inner membrane complexes using stochastic optical reconstruction microscopy (STORM). We reveal that subunits of the TIM23 complex, TIM23 and TIM44 (also known as TIMM23 and TIMM44, respectively), and the complex IV subunit COXIV, form organised clusters and show properties distinct from the outer membrane protein TOM20 (also known as TOMM20). Density based cluster analysis indicated a bimodal distribution of TIM44 that is distinct from TIM23, suggesting distinct TIM23 subcomplexes. COXIV is arranged in larger clusters that are disrupted upon disruption of complex IV assembly. Thus, STORM super-resolution microscopy is a powerful tool for examining the nanoscale distribution of mitochondrial inner membrane complexes, providing a 'visual' approach for obtaining pivotal information on how mitochondrial complexes exist in a cellular context.


Assuntos
Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial , Animais , Células HEK293 , Células HeLa , Humanos , Microscopia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transporte Proteico
5.
Mol Biol Cell ; 32(6): 475-491, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476211

RESUMO

Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered down-regulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed down-regulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one-carbon metabolism is a molecular feature in the biology of Sengers syndrome.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Carbono/metabolismo , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/fisiologia , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Cultura Primária de Células , Proteômica/métodos
7.
Elife ; 82019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682224

RESUMO

Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of this protein leads to a neurodegenerative disease. We show that hTim8a is required for the assembly of Complex IV in neurons, which is mediated through a transient interaction with Complex IV assembly factors, in particular the copper chaperone COX17. Complex IV assembly defects resulting from loss of hTim8a leads to oxidative stress and changes to key apoptotic regulators, including cytochrome c, which primes cells for death. Alleviation of oxidative stress with Vitamin E treatment rescues cells from apoptotic vulnerability. We hypothesise that enhanced sensitivity of neuronal cells to apoptosis is the underlying mechanism of MTS.


Assuntos
Surdocegueira/fisiopatologia , Distonia/fisiopatologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Deficiência Intelectual/fisiopatologia , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Atrofia Óptica/fisiopatologia , Multimerização Proteica , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Proteínas de Transporte de Cobre/metabolismo , Humanos , Proteínas de Membrana Transportadoras/deficiência , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Estresse Oxidativo , Mapas de Interação de Proteínas
8.
Semin Cell Dev Biol ; 76: 142-153, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28765093

RESUMO

Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.


Assuntos
Proteínas Mitocondriais/genética , Transporte Proteico/genética , Humanos
9.
Mol Cell ; 67(3): 457-470.e5, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28712726

RESUMO

Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that catalyzes the phosphorylation of monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid, respectively. Mutations in AGK cause Sengers syndrome, which is characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Here we identified AGK as a subunit of the mitochondrial TIM22 protein import complex. We show that AGK functions in a kinase-independent manner to maintain the integrity of the TIM22 complex, where it facilitates the import and assembly of mitochondrial carrier proteins. Mitochondria isolated from Sengers syndrome patient cells and tissues show a destabilized TIM22 complex and defects in the biogenesis of carrier substrates. Consistent with this phenotype, we observe perturbations in the tricarboxylic acid (TCA) cycle in cells lacking AGK. Our identification of AGK as a bona fide subunit of TIM22 provides an exciting and unexpected link between mitochondrial protein import and Sengers syndrome.


Assuntos
Cardiomiopatias/enzimologia , Catarata/enzimologia , Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cardiomiopatias/genética , Catarata/genética , Ciclo do Ácido Cítrico , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Complexos Multiproteicos , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estabilidade Proteica , Transporte Proteico , Transfecção
10.
Biomed Mater ; 12(4): 045019, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28569670

RESUMO

Numerous methods have been developed for preparing guiding channels/tracks to promote the alignment of highly oriented cell types. However, these manufacture methods cannot fabricate interconnected guiding channels within three-dimensional (3D) scaffolds. Providing a suitable architectural scaffold for cell attachment could lead cells to more rapidly display a desired phenotype and perform their unique functions. Previously, we developed a simple device composed of a pneumatic membrane that can generate a tunable vibration frequency to apply physical stimulation for fabricating a 3D aligned collagen fibril matrix with the characteristic D-period structure in one step. In the present study, we aimed to evaluate the cellular responses of thoracic aortic smooth muscle cells (A7r5) incorporated during the fabrication of 3D-aligned collagen fibrils with D-periods and compared these cells with those incorporated in a 3D, randomly distributed collagen matrix and in a two-dimensional (2D) aligned substrate after up to 10 days of culture. The results consistently demonstrated that A7r5 cells cultured within the 3D and 2D anisotropic matrices were aligned. Cells cultured in the 3D aligned scaffolds exhibited a higher proliferation rate as well as higher F-actin and smoothelin expression levels compared with cells cultured in 3D randomly distributed scaffolds. Together, these results indicate that a 3D-reconstituted, anisotropic collagen matrix fabricated by our process provides synergistic effects of tension stimulation and matrix stiffness on encapsulated cells and can direct A7r5 cells to transform from a synthetic phenotype into a contractile state.


Assuntos
Anisotropia , Colágeno/química , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Actinas/química , Animais , Aorta/citologia , Materiais Biocompatíveis/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Proteínas do Citoesqueleto/química , Matriz Extracelular , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Teste de Materiais , Microscopia de Fluorescência , Proteínas Musculares/química , Fenótipo , Ratos , Vibração
11.
Infect Immun ; 85(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242621

RESUMO

Coxiella burnetii, the causative agent of Q fever, establishes a unique lysosome-derived intracellular niche termed the Coxiella-containing vacuole (CCV). The Dot/Icm-type IVB secretion system is essential for the biogenesis of the CCV and the intracellular replication of Coxiella Effector proteins, translocated into the host cell through this apparatus, act to modulate host trafficking and signaling processes to facilitate CCV development. Here we investigated the role of CBU0077, a conserved Coxiella effector that had previously been observed to localize to lysosomal membranes. CBU0077 was dispensable for the intracellular replication of Coxiella in HeLa and THP-1 cells and did not appear to participate in CCV biogenesis. Intriguingly, native and epitope-tagged CBU0077 produced by Coxiella displayed specific punctate localization at host cell mitochondria. As such, we designated CBU0077 MceA (mitochondrial Coxiellaeffector protein A). Analysis of ectopically expressed MceA truncations revealed that the capacity to traffic to mitochondria is encoded within the first 84 amino acids of this protein. MceA is farnesylated by the host cell; however, this does not impact mitochondrial localization. Examination of mitochondria isolated from infected cells revealed that MceA is specifically integrated into the mitochondrial outer membrane and forms a complex of approximately 120 kDa. Engineering Coxiella to express either MceA tagged with 3×FLAG or MceA tagged with 2×hemagglutinin allowed us to perform immunoprecipitation experiments that showed that MceA forms a homo-oligomeric species at the mitochondrial outer membrane during infection. This research reveals that mitochondria are a bona fide target of Coxiella effectors and MceA is a complex-forming effector at the mitochondrial outer membrane during Coxiella infection.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Interações Hospedeiro-Patógeno , Membranas Mitocondriais/metabolismo , Multimerização Proteica , Febre Q/microbiologia , Fatores de Virulência/metabolismo , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Peso Molecular , Monócitos/microbiologia , Fatores de Virulência/química
12.
Cell Tissue Res ; 367(1): 141-154, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27515462

RESUMO

Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.


Assuntos
Bactérias/metabolismo , Mitocôndrias/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Animais , Bactérias/patogenicidade , Proteínas de Bactérias/metabolismo , Humanos , Imunidade , Fatores de Virulência/metabolismo
13.
Elife ; 52016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27554484

RESUMO

The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it's C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/análise , Membranas Mitocondriais/enzimologia , Subunidades Proteicas/análise , Linhagem Celular , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Multimerização Proteica
14.
J Gen Virol ; 96(12): 3519-3524, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404393

RESUMO

Specific roles have been ascribed to each of the 12 known rotavirus proteins apart from the non-structural protein 6 (NSP6). However, NSP6 may be present at sites of viral replication within the cytoplasm. Here we report that NSP6 from diverse species of rotavirus A localizes to mitochondria via conserved sequences in a predicted N-terminal a-helix. This suggests that NSP6 may affect mitochondrial functions during rotavirus infection.


Assuntos
Mitocôndrias/fisiologia , Rotavirus/metabolismo , Proteínas não Estruturais Virais/fisiologia , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Transporte Proteico , Rotavirus/genética , Replicação Viral
15.
Biofabrication ; 7(2): 025004, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25886195

RESUMO

There are many techniques for preparing two-dimensional aligned fibril matrices. However, the critical problem associated with these techniques is the destruction of the native structure (e.g., the α-helix) of the proteins. Moreover, most of these techniques cannot create a three-dimensional (3D), aligned reconstituted collagen fibril matrix in one step. In this study, we used a simple device composed of a pneumatic membrane that generates a tunable vibration frequency to apply physical stimulation to fabricate a 3D, aligned collagen fibril matrix with the characteristic D-period structure of collagen in one step. Using second harmonic images, we demonstrated that the aligned, reconstituted collagen fibrils preserve the native collagen D-period structure. The average angular deviation of fibril alignment was reduced to 25.01 ± 4.2° compared with the 39.7 ± 2.19° of alignment observed for the randomly distributed fibril matrix. In addition, the ultimate tensile strength of the aligned matrix when force was applied in the direction parallel to the fiber orientation was higher than that of the randomly oriented matrix. The aligned reconstituted collagen fibril matrix also enhanced the expression of smoothelin (a specific marker of contractile phenotype) of thoracic aortic smooth muscle cell (A7r5) relative to the randomly distributed collagen fibril matrix.


Assuntos
Colágeno/química , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Matriz Extracelular/química , Microscopia Eletrônica , Proteínas Musculares/metabolismo , Nanoestruturas/química , Ratos , Resistência à Tração , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA