Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501331

RESUMO

Florida is the top producer of fresh market tomatoes in the U.S., with an average production of 0.4 million metric tons. Tomatoes are commercially grown on plastic mulched raised beds in Southwest Florida, the primary production region in the state. Low tomato yield in plasticulture production is often associated with the poor control of nutsedge species. Nutsedge management, therefore, remains a critical production challenge for tomato growers in Florida. Sandy soil in this region promotes herbicide movement after heavy rainfall or irrigation, affecting weed suppression. This will also potentially impact the timely establishment of new tomato transplants and, consequently, the crop vigor if the herbicides get into the root zone. This review aims to present and discuss an overview of available options to safely manage major weeds of tomatoes, including nutsedge species, in plasticulture production. In addition, this review seeks to discuss an approach for utilizing herbicide adjuvants, such as spray deposition agents or oil binding agents, to improve herbicides' efficacy and tomato crop safety by enhancing their retention in plastic mulched raised beds.

2.
PLoS One ; 15(8): e0237258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756605

RESUMO

Aquatic weeds such as muskgrass (Chara spp.), water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), hydrilla (Hydrilla verticillate), filamentous algae (Lyngbya wollei), and duckweed (Lemna minor) thrive in farm canals within the Everglades Agricultural Area of South Florida. Their presence, particularly during the summer months is an environmental concern with regards to water quality, in addition to being a nuisance because of their ability to multiply and spread rapidly in open waters causing restricted drainage/irrigation flow and low dissolved oxygen levels. Chemical control is effective but can have undesirable off-target effects, so reduced herbicide use is desirable. Hence, need exists to discover ways in which these weeds could be best managed or utilized. The objective of this research was to evaluate the allelopathic effect of these weeds to determine their use as potential biopesticides. Six aqueous extracts were tested against 100 bacterial strains isolated from plants and soil to evaluate their antimicrobial activity. These extracts were also used to determine their insecticidal and antifeedant effects on fall armyworm (FAW, Spodoptera frugiperda). Both extracts and powder form of the aquatic weeds were tested for their herbicidal activity towards seed germination and growth of three common terrestrial weed species. At a dilution of 1:100 and 1:1,000, none of the aquatic weeds inhibited in-vitro growth of the bacterial strains, with one exception (filamentous algae extract at 1:100 reduced growth of one bacterial isolate by 54%). Water lettuce reduced the survival rate of FAW by 14% while hydrilla and duckweed caused 11% and 9% reduction of FAW growth, respectively. Powdered duckweed inhibited the growth of nutsedge by 41%, whereas filamentous algae powder and extract reduced germination of amaranth by 20% and 28%, respectively. Harvesting these weeds and converting them into useable compounds could not only eliminate the in situ farm canal and water quality problems but also result in development of new soil amendments or biopesticides.


Assuntos
Antibacterianos/toxicidade , Agentes de Controle Biológico/toxicidade , Plantas Daninhas/química , Agricultura , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Agentes de Controle Biológico/química , Cianobactérias/química , Eichhornia/química , Hydrocharitaceae/química , Inseticidas/química , Inseticidas/toxicidade , Plantas/microbiologia , Microbiologia do Solo , Spodoptera/efeitos dos fármacos
3.
Insects ; 11(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32284515

RESUMO

Asian citrus psyllid, Diaphorina citri, transmits Candidatus Liberibacter asiaticus (CLas), the putative causal agent of Huanglongbing disease. Although they primarily feed on the phloem of Citrus and related plants, when grove or host conditions are unfavorable, D. citri may be able to use weed species as alternate food sources for survival. To explore this possibility, electrical penetration graph (EPG) recordings (18 h) were performed to investigate the feeding behavior of psyllid adults and nymphs on three common south Florida weeds (Bidens alba, Eupatorium capillifolium, and Ludwigia octovalvis). EPG recordings revealed that the proportion of time spent by D. citri feeding on xylem was similar on all tested weed species (19%-22%) and on the positive control (20%), the preferred host, Citrus macrophylla. Very little to no phloem feeding was observed on weed species by either nymphs or adults. Histological studies using epifluorescence microscopy showed that salivary sheaths were branched and extended into xylem of weed species, whereas they ended in phloem on citrus plants. No choice behavioral assays showed that adults can obtain some nutrition by feeding on weed species (xylem feeding) and they may be able to survive on them for short intervals, when host conditions are unfavorable.

4.
Plants (Basel) ; 8(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766148

RESUMO

Glyphosate-based herbicide products are the most widely used broad-spectrum herbicides in the world for postemergent weed control. There are ever-increasing concerns that glyphosate, if not used judiciously, may cause adverse nontarget impacts in agroecosystems. The purpose of this brief review is to present and discuss the state of knowledge with respect to its persistence in the environment, possible effects on crop health, and impacts on crop nutrition.

5.
Biodegradation ; 29(2): 117-128, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29285669

RESUMO

The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.


Assuntos
Acetamidas/metabolismo , Bactérias/metabolismo , DNA Bacteriano/metabolismo , Marcação por Isótopo/métodos , Microbiologia do Solo , Aerobiose , Anaerobiose , Bactérias/genética , Biodegradação Ambiental , Isótopos de Carbono/metabolismo , DNA Bacteriano/genética , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Solo , Poluentes do Solo/metabolismo
6.
J Environ Qual ; 44(1): 137-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602328

RESUMO

The adsorption, desorption, degradation, and mineralization of C-glyphosate [-(phosphonomethyl)glycine] were examined in Catlin (a fine-silty, mixed, superactive, mesic Oxyaquic Argiudoll), Flanagan (a fine, smectitic, mesic Aquic Argiudoll), and Drummer (a fine-silty, mixed, superactive, mesic Typic Endoaquoll) soils under oxic and anoxic soil conditions. With the exception of the Drummer soil, soil aeration did not significantly alter the adsorption pattern of C-glyphosate to soils. Herbicide desorption was generally enhanced with anaerobiosis in all the soil types. Anoxic soils demonstrated slower microbial degradation and mineralization kinetics of C-glyphosate than oxic soils in all the soil types studied. Phosphate additions significantly reduced the adsorption of C-glyphosate to soils irrespective of soil aeration and confirmed the well-established competitive adsorption theory. The addition of soil phosphate stimulated degradation only in anoxic soils. The results from this research highlight the importance of soil redox conditions as an important factor affecting the bioavailability and mobility of glyphosate in soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA