RESUMO
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) colonization increases the risk of subsequent infection by MRSA strain complex interlinking between hospital and community-acquired MRSA which increases the chance of drug resistance and severity of the disease. OBJECTIVE: Genomic characterization of Staphylococcus aures strains isolated from patients attending regional referral hospitals in Tanzania. METHODOLOGY: A laboratory-based cross-sectional study using short read-based sequencing technology, (Nextseq550,Illumina, Inc. San diego, California, USA). The samples used were collected from patients attending selected regional referral hospitals in Tanzania under the SeqAfrica project. Sequences were analyzed using tools available in the center for genomic and epidemiology server, and visualization of the phylogenetic tree was performed in ITOL 6.0. SPSS 28.0 was used for statistical analysis. RESULTS: Among 103 sequences of S. aureus, 48.5% (50/103) carry the mecA gene for MRSA. High proportions of MRSA were observed among participants aged between 18 and 34 years (52.4%), in females (54.3%), and among outpatients (60.5%). The majority of observed MRSA carried plasmids rep5a (92.0%), rep16 (90.0%), rep7c (90.0%), rep15 (82.0%), rep19 (80.0%) and rep10 (72.0%). Among all plasmids observed rep5a, rep16, rep20, and repUS70 carried the blaZ gene, rep10 carried the erm(C) gene and rep7a carried the tet(K) gene. MLST and phylogeny analysis reveal high diversity among MRSA. Six different clones were observed circulating at selected regional hospitals and MRSA with ST8 was dominant. CONCLUSION: The study reveals a significant presence of MRSA in Staphylococcus aureus strains from Tanzanian regional hospitals, with nearly half carrying the mecA gene. MRSA is notably prevalent among young adults, females, and outpatients, showing high genetic diversity and dominance of ST8. Various plasmids carrying resistance genes indicate a complex resistance profile, highlighting the need for targeted interventions to manage MRSA infections in Tanzania.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Tanzânia/epidemiologia , Feminino , Masculino , Adulto , Adolescente , Adulto Jovem , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Filogenia , Pessoa de Meia-Idade , Genômica , Estudos Transversais , Encaminhamento e Consulta , Criança , Proteínas de Bactérias/genética , Genoma BacterianoRESUMO
BACKGROUND: Chronic leg ulcers are hard to treat and can be a burden, particularly in resource-limited settings where diagnosis is a challenge. Staphylococcus aureus is among the common bacteria isolated from chronic wounds with a great impact on wound healing, particularly in patients with co-morbidities. Antimicrobial resistance genes and virulence factors in Staphylococcus aureus isolates were assessed to support healthcare professionals to make better therapeutic choices, and importantly to curb the development and spread of antibiotic resistance. METHODS: A cross-sectional study involved both inpatients and outpatients with chronic leg ulcers was conducted from August 2022 to April 2023 in 2 health facilities in Kilimanjaro region in Tanzania. Antimicrobial susceptibility testing was done using the disk diffusion method. Further, whole genome sequencing was performed to study the genotypic characteristics of the isolates. RESULTS: A total of 92 participants were recruited in which 9 participants were only positive for 10 Staphylococcus aureus isolates upon culture. Five STs among 9 isolates were identified. Most of them belonged to ST8 (44%), with 1 isolate does not belong to any ST. Additionally, 50% of the isolates were methicillin-resistant Staphylococcus aureus (MRSA). All S. aureus isolates had almost similar virulence factors such as hemolysin, proteases and evasions that promote toxin production, protease production and host immune evasion respectively. Moreover, all mecA positive S. aureus isolates were phenotypically susceptible to cefoxitin. CONCLUSION: Presence of mecA positive S. aureus isolates which are also phenotypically susceptible to cefoxitin implies the possibility of classifying MRSA as MSSA. This may result in the possible emergence of highly cefoxitin - resistant strains in health care and community settings when subsequently exposed to beta-lactam agents. Therefore, combination of whole genome sequencing and conventional methods is important in assessing bacterial resistance and virulence to improve management of patients.
Assuntos
Antibacterianos , Úlcera da Perna , Infecções Estafilocócicas , Staphylococcus aureus , Fatores de Virulência , Sequenciamento Completo do Genoma , Humanos , Tanzânia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/patogenicidade , Antibacterianos/farmacologia , Masculino , Feminino , Virulência/genética , Fatores de Virulência/genética , Úlcera da Perna/microbiologia , Pessoa de Meia-Idade , Estudos Transversais , Adulto , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Doença Crônica , Idoso , Genoma BacterianoRESUMO
BACKGROUND: Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. OBJECTIVE: To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. MATERIALS AND METHODS: A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. RESULTS: Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. CONCLUSION: Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania.