Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Trop Med Hyg ; 111(1): 11-25, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38714193

RESUMO

The South Asia International Center of Excellence for Malaria Research, an NIH-funded collaborative program, investigated the epidemiology of malaria in the Indian state of Goa through health facility-based data collected from the Goa Medical College and Hospital (GMC), the state's largest tertiary healthcare facility, between 2012 and 2021. Our study investigated region-specific spatial and temporal patterns of malaria transmission in Goa and the factors driving such patterns. Over the past decade, the number of malaria cases, inpatients, and deaths at the GMC decreased significantly after a peak in 2014-2015. However, the proportion of severe malaria cases increased over the study period. Also, a trend of decreasing average parasitemia and increasing average gametocyte density suggests a shift toward submicroscopic infections and an increase in transmission commitment characteristic of low-transmission regions. Although transmission occurred throughout the year, 75% of the cases occurred between June and December, overlapping with the monsoon (June-October), which featured rainfall above yearly average, minimal diurnal temperature variation, and high relative humidity. Sociodemographic factors also had a significant association with malaria cases, with cases being more frequent in the 15-50-year-old age group, men, construction workers, and people living in urban areas within the GMC catchment region. Our environmental model of malaria transmission projects almost negligible transmission at the beginning of 2025 (annual parasitic index: 0.0095, 95% CI: 0.0075-0.0114) if the current control measures continue undisrupted.


Assuntos
Malária , Humanos , Índia/epidemiologia , Adolescente , Feminino , Adulto , Masculino , Criança , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Lactente , Malária/transmissão , Malária/epidemiologia , Malária/prevenção & controle , Idoso , Estações do Ano , Hospitais/estatística & dados numéricos , Erradicação de Doenças , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Falciparum/prevenção & controle
2.
PLoS Pathog ; 19(11): e1011585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939134

RESUMO

Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMß2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.


Assuntos
Malária Falciparum , Malária , Humanos , Monócitos , Ligantes , Vacúolos , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Células Matadoras Naturais , Plasmodium falciparum , Malária/metabolismo , Fagocitose , Imunoglobulina G/metabolismo
3.
Nat Commun ; 14(1): 5703, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709739

RESUMO

Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.


Assuntos
Malária Vivax , Plasmodium , Humanos , Plasmodium vivax/genética , Triptofano , Antígenos de Protozoários/genética , Sulfoglicoesfingolipídeos
4.
Malar J ; 22(1): 250, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653486

RESUMO

BACKGROUND: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. METHODS: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either - 80 °C or liquid nitrogen were also compared. RESULTS: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7-10 years) storage at - 80 °C on parasite recovery, enrichment or viability was observed. CONCLUSIONS: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Bancos de Espécimes Biológicos , Reprodutibilidade dos Testes , Parasitemia
5.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993272

RESUMO

Background: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. Methods: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either -80°C or liquid nitrogen were also compared. Results: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P<0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection with 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (>20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 hours. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average 30.0% post-MACS parasitemia and an average 5.30 × 10 5 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 day) or long term (7 - 10 year) storage at -80°C on parasite recovery, enrichment or viability was observed. Conclusions: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.

6.
Am J Trop Med Hyg ; 107(4_Suppl): 118-123, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228906

RESUMO

The Malaria Evolution in South Asia (MESA) International Center of Excellence for Malaria Research (ICEMR) conducted research studies at multiple sites in India to record blood-slide positivity over time, but also to study broader aspects of the disease. From the Southwest of India (Goa) to the Northeast (Assam), the MESA-ICEMR invested in research equipment, operational capacity, and trained personnel to observe frequencies of Plasmodium falciparum and Plasmodium vivax infections, clinical presentations, treatment effectiveness, vector transmission, and reinfections. With Government of India partners, Indian and U.S. academics, and trained researchers on the ground, the MESA-ICEMR team contributes information on malaria in selected parts of India.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Ásia/epidemiologia , Humanos , Índia/epidemiologia , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum , Plasmodium vivax
7.
Am J Trop Med Hyg ; 107(4_Suppl): 107-117, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228910

RESUMO

The Malaria Evolution in South Asia (MESA) International Center for Excellence in Malaria Research (ICEMR) was established by the US National Institutes of Health (US NIH) as one of 10 malaria research centers in endemic countries. In 10 years of hospital-based and field-based work in India, the MESA-ICEMR has documented the changing epidemiology and transmission of malaria in four different parts of India. Malaria Evolution in South Asia-ICEMR activities, in collaboration with Indian partners, are carried out in the broad thematic areas of malaria case surveillance, vector biology and transmission, antimalarial resistance, pathogenesis, and host response. The program integrates insights from surveillance and field studies with novel basic science studies. This is a two-pronged approach determining the biology behind the disease patterns seen in the field, and generating new relevant biological questions about malaria to be tested in the field. Malaria Evolution in South Asia-ICEMR activities inform local and international stakeholders on the current status of malaria transmission in select parts of South Asia including updates on regional vectors of transmission of local parasites. The community surveys and new laboratory tools help monitor ongoing efforts to control and eliminate malaria in key regions of South Asia including the state of evolving antimalarial resistance in different parts of India, new host biomarkers of recent infection, and molecular markers of pathogenesis from uncomplicated and severe malaria.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Ásia/epidemiologia , Humanos , Índia/epidemiologia , Cooperação Internacional , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , National Institutes of Health (U.S.) , Estados Unidos/epidemiologia
8.
Trends Parasitol ; 38(4): 302-315, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34991983

RESUMO

A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.


Assuntos
Malária , Parasitos , Animais , Fenômenos Biomecânicos , Eritrócitos/parasitologia , Humanos , Ligantes , Malária/parasitologia , Merozoítos/metabolismo , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
Nat Commun ; 12(1): 1629, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712609

RESUMO

The structural integrity of the host red blood cell (RBC) is crucial for propagation of Plasmodium spp. during the disease-causing blood stage of malaria infection. To assess the stability of Plasmodium vivax-infected reticulocytes, we developed a flow cytometry-based assay to measure osmotic stability within characteristically heterogeneous reticulocyte and P. vivax-infected samples. We find that erythroid osmotic stability decreases during erythropoiesis and reticulocyte maturation. Of enucleated RBCs, young reticulocytes which are preferentially infected by P. vivax, are the most osmotically stable. P. vivax infection however decreases reticulocyte stability to levels close to those of RBC disorders that cause hemolytic anemia, and to a significantly greater degree than P. falciparum destabilizes normocytes. Finally, we find that P. vivax new permeability pathways contribute to the decreased osmotic stability of infected-reticulocytes. These results reveal a vulnerability of P. vivax-infected reticulocytes that could be manipulated to allow in vitro culture and develop novel therapeutics.


Assuntos
Malária Vivax , Plasmodium vivax , Reticulócitos/metabolismo , Reticulócitos/parasitologia , Anemia Hemolítica , Medula Óssea , Diferenciação Celular , Eritrócitos , Hemólise , Humanos , Malária
10.
J Infect Dis ; 223(10): 1817-1821, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32941614

RESUMO

Plasmodium vivax has 2 invasion ligand/host receptor pathways (P. vivax Duffy-binding protein/Duffy antigen receptor for chemokines [DARC] and P. vivax reticulocyte binding protein 2b/transferrin receptor [TfR1]) that are promising targets for therapeutic intervention. We optimized invasion assays with isogenic cultured reticulocytes. Using a receptor blockade approach with multiple P. vivax isolates, we found that all strains utilized both DARC and TfR1, but with significant variation in receptor usage. This suggests that P. vivax, like Plasmodium falciparum, uses alternative invasion pathways, with implications for pathogenesis and vaccine development.


Assuntos
Antígenos CD , Sistema do Grupo Sanguíneo Duffy , Malária Vivax , Plasmodium vivax , Receptores de Superfície Celular , Receptores da Transferrina , Células Cultivadas , Humanos , Plasmodium vivax/patogenicidade , Reticulócitos/parasitologia
11.
PLoS Negl Trop Dis ; 14(3): e0008104, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32119669

RESUMO

Approximately one-third of the global population is at risk of Plasmodium vivax infection, and an estimated 7.51 million cases were reported in 2017. Although, P. vivax research is currently limited by the lack of a robust continuous in vitro culture system for this parasite, recent work optimizing short-term ex vivo culture of P. vivax from cryopreserved isolates has facilitated quantitative assays on synchronous parasites. Pairing this improved culture system with low-input Smart-seq2 RNAseq library preparation, we sought to determine whether transcriptional profiling of P. vivax would provide insight into the differential survival of parasites in different culture media. To this end we probed the transcriptional signature of three different ex vivo P. vivax samples in four different culture media using only 1000 cells for each time point taken during the course of the intraerythrocytic development cycle (IDC). Using this strategy, we achieved similar quality transcriptional data to previously reported P. vivax transcriptomes. We found little effect with varying culture media on parasite transcriptional signatures, identified many novel gametocyte-specific genes from transcriptomes of FACS-isolated gametocytes, and determined invasion ligand expression in schizonts in biological isolates and across the IDC. In total, these data demonstrate the feasibility and utility of P. vivax RNAseq-based transcriptomic studies using minimal biomass input to maximize experimental capacity.


Assuntos
Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Malária Vivax/parasitologia , Plasmodium vivax/crescimento & desenvolvimento , Adolescente , Criança , Pré-Escolar , Meios de Cultura/química , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Parasitologia/métodos , Plasmodium vivax/genética , Análise de Sequência de RNA
12.
Commun Biol ; 2: 350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552303

RESUMO

Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use 'plasma membrane profiling' and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals.


Assuntos
Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteômica , Humanos , Proteoma , Proteômica/métodos , Biologia de Sistemas/métodos
13.
Am J Hematol ; 94(9): 963-974, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31148215

RESUMO

Malaria pathogenesis is caused by the replication of Plasmodium parasites within the red blood cells (RBCs) of the vertebrate host. This selective pressure has favored the evolution of protective polymorphisms in erythrocyte proteins, a subset of which serve as cognate receptors for parasite invasion ligands. Recently, the generation of RBCs from immortalized hematopoietic stem cells (HSCs) has offered a more tractable system for genetic manipulation and long-term in vitro culture, enabling elucidation of the functional determinants of host susceptibility in vitro. Here we report the generation of an immortalized erythroid progenitor cell line (EJ cells) from as few as 100 000 peripheral blood mononuclear cells. It offers a robust method for the creation of customized model systems from small volumes of peripheral blood. The EJ cell differentiation mirrored erythropoiesis of primary HSCs, yielding orthochromatic erythroblasts and enucleated RBCs after eight days (ejRBCs). The ejRBCs supported invasion by both P. vivax and P. falciparum. To demonstrate the genetic tractability of this system, we used CRISPR/Cas9 to disrupt the Duffy Antigen/Receptor for Chemokines (DARC) gene, which encodes the canonical receptor of P. vivax in humans. Invasion of P. vivax into this DARC-knockout cell line was strongly inhibited providing direct genetic evidence that P. vivax requires DARC for RBC invasion. Further, genetic complementation of DARC restored P. vivax invasion. Taken together, the peripheral blood immortalization method presented here offers the capacity to generate biologically representative model systems for studies of blood-stage malaria invasion from the peripheral blood of donors harboring unique genetic backgrounds, or rare polymorphisms.


Assuntos
Células Precursoras Eritroides , Malária Falciparum , Malária Vivax , Modelos Biológicos , Células-Tronco de Sangue Periférico , Plasmodium falciparum/metabolismo , Plasmodium vivax/metabolismo , Linhagem Celular Transformada , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/parasitologia , Células Precursoras Eritroides/fisiologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Malária Vivax/metabolismo , Malária Vivax/patologia , Células-Tronco de Sangue Periférico/metabolismo , Células-Tronco de Sangue Periférico/parasitologia , Células-Tronco de Sangue Periférico/patologia
14.
Nature ; 565(7737): 118-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542156

RESUMO

Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.


Assuntos
Antígenos de Protozoários/ultraestrutura , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Plasmodium falciparum , Proteínas de Protozoários/ultraestrutura , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Drosophila , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitologia , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
15.
Commun Biol ; 1: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271928

RESUMO

The ATP-binding cassette transporter ABCB6 was recently discovered to encode the Langereis (Lan) blood group antigen. Lan null individuals are asymptomatic, and the function of ABCB6 in mature erythrocytes is not understood. Here, we assessed ABCB6 as a host factor for Plasmodium falciparum malaria parasites during erythrocyte invasion. We show that Lan null erythrocytes are highly resistant to invasion by P. falciparum, in a strain-transcendent manner. Although both Lan null and Jr(a-) erythrocytes harbor excess porphyrin, only Lan null erythrocytes exhibit a P. falciparum invasion defect. Further, the zoonotic parasite P. knowlesi invades Lan null and control cells with similar efficiency, suggesting that ABCB6 may mediate P. falciparum invasion through species-specific molecular interactions. Using tandem mass tag-based proteomics, we find that the only consistent difference in membrane proteins between Lan null and control cells is absence of ABCB6. Our results demonstrate that a newly identified naturally occurring blood group variant is associated with resistance to Plasmodium falciparum.

16.
Curr Opin Microbiol ; 46: 109-115, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366310

RESUMO

Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.


Assuntos
Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Reticulócitos/parasitologia , Animais , Interações Hospedeiro-Parasita , Humanos , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tropismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29378713

RESUMO

Plasmodium vivax chloroquine resistance has been documented in nearly every region where this malaria-causing parasite is endemic. Unfortunately, P. vivax resistance surveillance and drug discovery are challenging due to the low parasitemias of patient isolates and poor parasite survival through ex vivo maturation that reduce the sensitivity and scalability of current P. vivax antimalarial assays. Using cryopreserved patient isolates from Brazil and fresh patient isolates from India, we established a robust enrichment method for P. vivax parasites. We next performed a medium screen for formulations that enhance ex vivo survival. Finally, we optimized an isotopic metabolic labeling assay for measuring P. vivax maturation and its sensitivity to antimalarials. A KCl Percoll density gradient enrichment method increased parasitemias from small-volume ex vivo isolates by an average of >40-fold. The use of Iscove's modified Dulbecco's medium for P. vivax ex vivo culture approximately doubled the parasite survival through maturation. Coupling these with [3H]hypoxanthine metabolic labeling permitted sensitive and robust measurements of parasite maturation, which was used to measure the sensitivities of Brazilian P. vivax isolates to chloroquine and several novel antimalarials. These techniques can be applied to rapidly and robustly assess the P. vivax isolate sensitivities to antimalarials for resistance surveillance and drug discovery.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Testes de Sensibilidade Parasitária/métodos , Plasmodium vivax/efeitos dos fármacos , Brasil , Humanos , Índia
18.
Science ; 359(6371): 48-55, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302006

RESUMO

Plasmodium vivax shows a strict host tropism for reticulocytes. We identified transferrin receptor 1 (TfR1) as the receptor for P. vivax reticulocyte-binding protein 2b (PvRBP2b). We determined the structure of the N-terminal domain of PvRBP2b involved in red blood cell binding, elucidating the molecular basis for TfR1 recognition. We validated TfR1 as the biological target of PvRBP2b engagement by means of TfR1 expression knockdown analysis. TfR1 mutant cells deficient in PvRBP2b binding were refractory to invasion of P. vivax but not to invasion of P. falciparum Using Brazilian and Thai clinical isolates, we show that PvRBP2b monoclonal antibodies that inhibit reticulocyte binding also block P. vivax entry into reticulocytes. These data show that TfR1-PvRBP2b invasion pathway is critical for the recognition of reticulocytes during P. vivax invasion.


Assuntos
Antígenos CD/metabolismo , Malária Vivax/metabolismo , Malária Vivax/parasitologia , Proteínas de Membrana/química , Plasmodium vivax/patogenicidade , Proteínas de Protozoários/química , Receptores da Transferrina/metabolismo , Reticulócitos/parasitologia , Antígenos CD/genética , Cristalografia por Raios X , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Parasita , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Plasmodium vivax/metabolismo , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura , Receptores da Transferrina/genética
19.
Curr Opin Microbiol ; 40: 21-31, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29096194

RESUMO

Non-human primates harbor diverse species of malaria parasites, including the progenitors of Plasmodium falciparum and Plasmodium vivax. Cross-species transmission of some malaria parasites-most notably the macaque parasite, Plasmodium knowlesi-continues to this day, compelling the scientific community to ask whether these zoonoses could impede malaria control efforts by acting as a source of recurrent human infection. Host-restriction varies considerably among parasite species and is governed by both ecological and molecular variables. In particular, the efficiency of red blood cell invasion constitutes a prominent barrier to zoonotic emergence. Although proteins expressed upon the erythrocyte surface exhibit considerable diversity both within and among hosts, malaria parasites have adapted to this heterogeneity via the expansion of protein families associated with invasion, offering redundant mechanisms of host cell entry. This molecular toolkit may enable some parasites to circumvent host barriers, potentially yielding host shifts upon subsequent adaptation. Recent studies have begun to elucidate the molecular determinants of host-specificity, as well as the mechanisms that malaria parasites use to overcome these restrictions. We review recent studies concerning host tropism in the context of erythrocyte invasion by focusing on three malaria parasites that span the zoonotic spectrum: P. falciparum, P. knowlesi, and P. vivax.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium/crescimento & desenvolvimento , Animais , Especificidade de Hospedeiro , Humanos , Malária/sangue , Plasmodium/genética , Plasmodium/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(44): E9356-E9365, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078358

RESUMO

During malaria blood-stage infections, Plasmodium parasites interact with the RBC surface to enable invasion followed by intracellular proliferation. Critical factors involved in invasion have been identified using biochemical and genetic approaches including specific knockdowns of genes of interest from primary CD34+ hematopoietic stem cells (cRBCs). Here we report the development of a robust in vitro culture system to produce RBCs that allow the generation of gene knockouts via CRISPR/Cas9 using the immortal JK-1 erythroleukemia line. JK-1 cells spontaneously differentiate, generating cells at different stages of erythropoiesis, including terminally differentiated nucleated RBCs that we term "jkRBCs." A screen of small-molecule epigenetic regulators identified several bromodomain-specific inhibitors that promote differentiation and enable production of synchronous populations of jkRBCs. Global surface proteomic profiling revealed that jkRBCs express all known Pfalciparum host receptors in a similar fashion to cRBCs and that multiple Pfalciparum strains invade jkRBCs at comparable levels to cRBCs and RBCs. Using CRISPR/Cas9, we deleted two host factors, basigin (BSG) and CD44, for which no natural nulls exist. BSG interacts with the parasite ligand Rh5, a prominent vaccine candidate. A BSG knockout was completely refractory to parasite invasion in a strain-transcendent manner, confirming the essential role for BSG during invasion. CD44 was recently identified in an RNAi screen of blood group genes as a host factor for invasion, and we show that CD44 knockout results in strain-transcendent reduction in invasion. Furthermore, we demonstrate a functional interaction between these two determinants in mediating Pfalciparum erythrocyte invasion.


Assuntos
Sistemas CRISPR-Cas/genética , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/genética , Antígenos de Protozoários/metabolismo , Basigina/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Epigênese Genética/fisiologia , Técnicas de Inativação de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Humanos , Receptores de Hialuronatos/metabolismo , Células K562 , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/parasitologia , Ligantes , Malária/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Proteômica/métodos , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA