Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(27): 24351-24361, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457470

RESUMO

Therapies based on mesenchymal stem cells have incredible potential for tissue regeneration. Tracking cells and keeping them at the injury site are creating challenges. The cells can be sown into a biocompatible scaffold as a possible remedy. Tissue engineering construction is a difficult, multistep process that requires many variables to be optimized, including the stem cell source, molecular components, scaffold architecture, and a suitable in vivo animal model. In order to locate a suitable regenerative scaffold for delivering stromal cells to regions with greater healing potential, we assessed whether human Wharton's Jelly-derived mesenchymal stem cells (WJMSCs) responded on biological membranes. WJMSCs were isolated, characterized, and seeded onto an amniotic membrane-based scaffold. Results obtained in vitro revealed that the seeded scaffolds had a significant impact on a number of critical variables, including seeding effectiveness, cellular dispersion, adhesion, survival, and metabolic activity. The research sheds light on a fresh facet of material behavior and paves the way for the creation of scaffold materials that support tissue regeneration and repair. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their healing potential with WJMSCs.

2.
Curr Issues Mol Biol ; 44(9): 4045-4058, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36135189

RESUMO

Ex vivo expanded decidua-basalis(DB)-derived mesenchymal stem cells (MSCs) obtained from single donors have demonstrated therapeutic benefits in in vitro and in vivo studies. In this report, the intravenous and subcutaneous administration of DB-MSCs obtained from five healthy donors was assessed considering clinical grade proliferation, accessibility, and toxic effects in Wistar albino rats. The ability of the obtained DB-MSCs for differentiating, as well as their expression of several cell surface markers and immunomodulatory activities, were all assessed. Clinical standard proliferated cells were administered to animals intravenously and subcutaneously in a series of preclinical models in order to assess their in vivo toxicity, general safety, and tumorigenic possibilities. We established that DB cells exhibit structural and functional traits with MSCs. At various doses supplied intravenously or subcutaneously, the research showed no fatality, abnormal response to therapy, or substantial pathological modifications in the rats. Furthermore, there was no indication of prenatal damage in the same animal species when the rats were repeatedly treated with DBMSCs. Thus, DBMSCs were demonstrated to be non-toxic, non-teratogenic, and non-tumorigenic. To determine whether they can be administrated to human patients without risk, more investigation is recommended.

3.
ACS Omega ; 6(51): 35538-35547, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984285

RESUMO

Mesenchymal stromal cells (MSCs) were isolated from Decidua Basalis (DB) and studied for their final cellular product measures, such as safety, purity, quality, quantity, and integrity that are ascribed as cellular products. This research aimed to isolate MSCs for expansion under the clinical scale level with potency, secretion of cytokines, growth factors secreted by DB-MSCs, and their role in wound healing. Placentas isolated from DB were expanded up to the 10th passage, and their characteristics were assessed by phenotypic characterization using a flow cytometer and analyzed for trilineage differentiation by cytochemical staining. Growth factors (GF), interleukins (IL), chemokines, and tissue inhibitors of metalloproteinases (TIMP) were measured with enzyme-linked immunosorbent assays. The harvested cells from the placenta yield 1.63-2.45 × 104cells/cm2 at P(0), 3.66-5.31 × 104cells/cm2 at P(1), 4.01-5.47 × 104cells/cm2 at P(2), and 3.94-5.60 × 104cells/cm2 at P(10) accordingly; up to 4.74 × 109 P(2) DB-MSCs were harvested within 9-11 days. The viability of the freshly harvested cells was greater than 90% in all cases. It is able to differentiate into chondrocytes, adipocytes, and osteogenic cells, proving their ability to differentiate into a trilineage. Thus, this study put an insight into a secure and conventional approach toward their ability to differentiate into multiple lineages and secrete factors related to immune regulation, making DB-MSCs a potential source in various therapeutic applications.

4.
J Nat Sci Biol Med ; 8(2): 221-228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781492

RESUMO

CONTEXT: Multipotent stromal cells are isolated from various fetal sources and studied for their phenotypic characterization and ability to differentiate into different lineages. AIMS: In this study, we aimed to isolate mesenchymal stem or stromal cells (MSCs) from villous chorion, expand under clinical scale level, compared the potency with other source of fetal-derived MSCs and studied their differentiation capabilities to form all three germ layers. SUBJECTS AND METHODS: Placenta obtained from C-section was used to isolate villous chorion-MSCs (VC-MSCs) were expanded up to tenth passage and their characteristics were assessed by proliferation rate and phenotypic characterization using fluorescence-activated cell sorting and also expanded MSCs were analyzed for differentiated into all three germ layers by cytochemical staining. RESULTS: Stem cell isolated from VC yielded up to 2.16 × 109 cells at second passage and 3.06-4.23 × 104 cells/cm2 at tenth passage. The total yield of cells with all three sources analysis showed that VC has a low yield at second passage compared to amniotic membrane and Wharton's jelly, but the VC-MSCs yield significant amount in lesser days. The phenotypic characterization revealed positive for CD73, CD90, and CD105 and negative for CD79, CD34, CD45, human leukocyte antigen-DR proving their stemness even at tenth passage. They can able to differentiate into ectodermic neural cells, endodermic hepatocytes, and mesodermal differentiation of chondrocytes, adipocytes, and osteogenic cells proving their ability to differentiate into all three germ layers. CONCLUSIONS: This result suggests that the VC-MSCs are ideal source of stem cells with similar characteristics such as other adult stem cells. Thus, VC-derived MSCs can be potential clinical source in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA