Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Diab Vasc Dis Res ; 17(1): 1479164119892140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868000

RESUMO

BACKGROUND: C-type lectin receptors, including Dectin-2, are pattern recognition receptors on monocytes and macrophages that mainly recognize sugars and sugar-like structures present on fungi. Activation of C-type lectin receptors induces downstream CARD9 signalling, leading to the production of cytokines. We hypothesized that under hyperglycaemic conditions, as is the case in diabetes mellitus, glycosylated protein (sugar-like) structures activate C-type lectin receptors, leading to immune cell activation and increased atherosclerosis development. METHODS: Low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with bone marrow from control wild-type, Dectin-2-/- or Card9-/- mice. After 6 weeks of recovery, mice received streptozotocin injections (50 mg/g BW; 5 days) to induce hyperglycaemia. After an additional 2 weeks, mice were fed a Western-type diet (0.1% cholesterol) for 10 weeks. RESULTS AND CONCLUSION: Deletion of haematopoietic Dectin-2 reduced the number of circulating Ly6Chi monocytes, increased pro-inflammatory cytokine production, but did not affect atherosclerosis development. Deletion of haematopoietic CARD9 tended to reduce macrophage and collagen content in atherosclerotic lesions, again without influencing the lesion size. Deletion of haematopoietic Dectin-2 did not influence atherosclerosis development under hyperglycaemic conditions, despite some minor effects on inflammation. Deletion of haematopoietic CARD9 induced minor alterations in plaque composition under hyperglycaemic conditions, without affecting lesion size.


Assuntos
Doenças da Aorta/etiologia , Aterosclerose/etiologia , Glicemia/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Diabetes Mellitus Experimental/complicações , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Lectinas Tipo C/genética , Animais , Antígenos Ly/metabolismo , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Transplante de Medula Óssea , Proteínas Adaptadoras de Sinalização CARD/deficiência , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/sangue , Dieta Ocidental , Predisposição Genética para Doença , Lectinas Tipo C/deficiência , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética
2.
Sci Rep ; 9(1): 4337, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867470

RESUMO

Inflammatory reactions activated by pattern recognition receptors (PRRs) on the membrane of innate immune cells play an important role in atherosclerosis. Whether the PRRs of the C-type lectin receptor (CLR) family including Dectin-2 may be involved in the pathogenesis of atherosclerosis remains largely unknown. Recently, the CLR-adaptor molecule caspase recruitment domain family member 9 (CARD9) has been suggested to play a role in cardiovascular pathologies as it provides the link between CLR activation and transcription of inflammatory cytokines as well as immune cell recruitment. We therefore evaluated whether hematopoietic deletion of Dectin-2 or CARD9 reduces inflammation and atherosclerosis development. Low-density lipoprotein receptor (Ldlr)-knockout mice were transplanted with bone marrow from wild-type, Dectin-2- or Card9-knockout mice and fed a Western-type diet containing 0.1% (w/w) cholesterol. After 10 weeks, lipid and inflammatory parameters were measured and atherosclerosis development was determined. Deletion of hematopoietic Dectin-2 or CARD9 did not influence plasma triglyceride and cholesterol levels. Deletion of hematopoietic Dectin-2 did not affect atherosclerotic lesion area, immune cell composition, ex vivo cytokine secretion by peritoneal cells or bone marrow derived macrophages. Unexpectedly, deletion of hematopoietic CARD9 increased atherosclerotic lesion formation and lesion severity. Deletion of hematopoietic CARD9 did also not influence circulating immune cell composition and peripheral cytokine secretion. Besides a tendency to a reduced macrophage content within these lesions, plasma MCP-1 levels decreased upon WTD feeding. Deletion of hematopoietic Dectin-2 did not influence atherosclerosis development in hyperlipidemic mice. The absence of CARD9 unexpectedly increased atherosclerotic lesion size and severity, suggesting that the presence of CARD9 may protect against initiation of atherosclerosis development.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Sistema Hematopoético/metabolismo , Hiperlipidemias/patologia , Lectinas Tipo C/genética , Placa Aterosclerótica/prevenção & controle , Animais , Hiperlipidemias/sangue , Camundongos , Camundongos Knockout , Placa Aterosclerótica/patologia
3.
Nat Med ; 21(3): 263-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25686106

RESUMO

The ketone bodies ß-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation, caloric restriction, high-intensity exercise, or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however, the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB, but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to urate crystals, ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family, CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11, inflammasome activation. Mechanistically, BHB inhibits the NLRP3 inflammasome by preventing K(+) efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK), reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle, and independently of uncoupling protein-2 (UCP2), sirtuin-2 (SIRT2), the G protein-coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome-mediated interleukin (IL)-1ß and IL-18 production in human monocytes. In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1ß secretion in mouse models of NLRP3-mediated diseases such as Muckle-Wells syndrome, familial cold autoinflammatory syndrome and urate crystal-induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Caspase 1/efeitos dos fármacos , Síndromes Periódicas Associadas à Criopirina , Inflamassomos/antagonistas & inibidores , Interleucina-1beta/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Adulto , Idoso , Animais , Dieta Cetogênica , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Interleucina-18 , Interleucina-1beta/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Potássio/metabolismo
4.
Cell Rep ; 5(2): 340-8, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24095739

RESUMO

Caspase-8 or cellular FLICE-like inhibitor protein (cFLIP) deficiency leads to embryonic lethality in mice due to defects in endothelial tissues. Caspase-8(-/-) and receptor-interacting protein kinase-3 (RIPK3)(-/-), but not cFLIP(-/-) and RIPK3(-/-), double-knockout animals develop normally, indicating that caspase-8 antagonizes the lethal effects of RIPK3 during development. Here, we show that the acute deletion of caspase-8 in the gut of adult mice induces enterocyte death, disruption of tissue homeostasis, and inflammation, resulting in sepsis and mortality. Likewise, acute deletion of caspase-8 in a focal region of the skin induces local keratinocyte death, tissue disruption, and inflammation. Strikingly, RIPK3 ablation rescues both phenotypes. However, acute loss of cFLIP in the skin produces a similar phenotype that is not rescued by RIPK3 ablation. TNF neutralization protects from either acute loss of caspase-8 or cFLIP. These results demonstrate that caspase-8-mediated suppression of RIPK3-induced death is required not only during development but also for adult homeostasis. Furthermore, RIPK3-dependent inflammation is dispensable for the skin phenotype.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Animais , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/deficiência , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Enterócitos/citologia , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Tamoxifeno/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA