Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(6): e0009022, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35532534

RESUMO

Streptomyces sp. strain FB2 is an actinomycete isolated from rice rhizosphere. A whole-genome assembly of the strain FB2 comprised 7,727,571 bp (number of contigs, 55; GC content, 71.96%). In total, 17 biosynthetic gene clusters (BGCs), including nonribosomal peptides, polyketides, terpenes, and ribosomally synthesized and posttranslationally modified peptides, were predicted.

2.
J Basic Microbiol ; 62(2): 135-149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34845728

RESUMO

The bacteria that colonize plant roots and enhance plant growth by various mechanisms are known as plant growth-promoting rhizobacteria (PGPR). The functions of rhizobacteria stand substantially unexplored and detailed insights into the aerobic rice ecosystem are yet to be examined. In this study, we have isolated rhizobacteria from rice varieties grown under aerobic conditions. Seed germination test showed that strain Ekn 03 was significantly effective in stimulating germination, enhancing shoot and root length, and increasing dry matter accumulation in treated rice plants as compared to the uninoculated plants. Under greenhouse conditions, strain Ekn 03 treated rice varieties showed an overall increase in plant height by 7.63%, dry matter accumulation by 16.23%, and total chlorophyll content by 76.47%. Soil acetylene reduction assay (ARA) (4.17 nmole ethylene/g soil/h) and in-planta ARA (4.2 × 10-2 nmole ethylene/mg fresh weight of plant/h) was significantly higher in Ekn 03 treated rice variety PB 1509 under aerobic conditions. Other rice varieties showed comparable performance on inoculation with strain Ekn 03. The endophytic and rhizospheric population of antibiotic tagged Ekn 03 was higher in the roots of PB 1509 (1.02 × 104 cfu/g and 5.8 × 105 cfu/g soil, respectively) compared to other rice varieties. 16S rDNA sequence analysis revealed that strain Ekn 03 was having 100% similarity with Pseudomonas protegens. This study suggests that strain Ekn 03 can be used as a microbial inoculant in rice plants under aerobic system of cultivation. This is the first report on the application of P. protegens as PGPR in rice.


Assuntos
Oryza , Bioprospecção , Ecossistema , Genótipo , Desenvolvimento Vegetal , Raízes de Plantas , Solo , Microbiologia do Solo
3.
Sci Rep ; 11(1): 22081, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764331

RESUMO

Drought stress is the major abiotic factor limiting crop production. Co-inoculating crops with nitrogen fixing bacteria and plant growth-promoting rhizobacteria (PGPR) improves plant growth and increases drought tolerance in arid or semiarid areas. Soybean is a major source of high-quality protein and oil for humans. It is susceptible to drought stress conditions. The co-inoculation of drought-stressed soybean with nodulating rhizobia and root-colonizing, PGPR improves the root and the shoot growth, formation of nodules, and nitrogen fixation capacity in soybean. The present study was aimed to observe if the co-inoculation of soybean (Glycine max L. (Merr.) nodulating with Bradyrhizobium japonicum USDA110 and PGPR Pseudomonas putida NUU8 can enhance drought tolerance, nodulation, plant growth, and nutrient uptake under drought conditions. The results of the study showed that co-inoculation with B. japonicum USDA110 and P. putida NUU8 gave more benefits in nodulation and growth of soybean compared to plants inoculated with B. japonicum USDA110 alone and uninoculated control. Under drought conditions, co-inoculation of B. japonicum USDA 110 and P. putida NUU8 significantly enhanced the root length by 56%, shoot length by 33%, root dry weight by 47%, shoot dry weight by 48%, and nodule number 17% compared to the control under drought-stressed. Co-inoculation with B. japonicum, USDA 110 and P. putida NUU8 significantly enhanced plant and soil nutrients and soil enzymes compared to control under normal and drought stress conditions. The synergistic use of B. japonicum USDA110 and P. putida NUU8 improves plant growth and nodulation of soybean under drought stress conditions. The results suggested that these strains could be used to formulate a consortium of biofertilizers for sustainable production of soybean under drought-stressed field conditions.


Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Simbiose , Bradyrhizobium/fisiologia , Secas , Nodulação , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Microbiologia do Solo , Glycine max/microbiologia , Glycine max/fisiologia , Estresse Fisiológico
4.
World J Microbiol Biotechnol ; 37(10): 167, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468874

RESUMO

Rhizosphere microbial communities are dynamic and play a crucial role in diverse biochemical processes and nutrient cycling. Soil type and cultivar modulate the composition of rhizosphere microbial communities. Changes in the community composition significantly alter microbial function and ecological process. We examined the influence of soil type on eubacterial and diazotrophic community abundance and microbial metabolic potential in chickpea (cv. BG 372 and cv. BG 256) rhizosphere. The total eubacterial and diazotrophic community as estimated through 16 S rDNA and nifH gene copy numbers using qPCR showed the soil type influence with clear rhizosphere effect on gene abundance. PLFA study has shown the variation in microbial community structure with different soil types. Differential influence of soil types and cultivar on the ratio of Gram positive to Gram negative bacteria was observed with most rhizosphere soils corresponding to higher ratios than bulk soil. The rhizosphere microbial activities (urease, dehydrogenase, alkaline phosphatase and beta-glucosidase) were also assessed as an indicator of microbial metabolic diversity. Principal component analysis and K-means non-hierarchical cluster mapping grouped soils into three categories, each having different soil enzyme activity or edaphic drivers. Soil type and cultivar influence on average substrate utilization pattern analyzed through community level physiological profiling (CLPP) was higher for rhizosphere soils than bulk soils. The soil nutrient studies revealed that both soil type and cultivar influenced the available N, P, K and organic carbon content of rhizosphere soil. Our study signifies that soil type and cultivar jointly influenced soil microbial community abundance and their metabolic potential in chickpea rhizosphere.


Assuntos
Bactérias/metabolismo , Cicer/crescimento & desenvolvimento , Nutrientes/metabolismo , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cicer/microbiologia , Microbiota , Fixação de Nitrogênio , Nutrientes/análise , Filogenia , Rizosfera
5.
Plants (Basel) ; 9(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213067

RESUMO

Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR-plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.

6.
Microbiol Resour Announc ; 9(20)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409538

RESUMO

Azotobacter chroococcum strain W5 (MTCC 25045) is an effective diazotrophic bacterium with plant growth-promoting traits. Here, we report the draft genome assembly of this biologically and agronomically evaluated A. chroococcum strain. The genome assembly in 55 contigs is 4,617,864 bp long, with a G+C content of 66.83%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA