Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cytokine ; 178: 156592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574505

RESUMO

The severity of COVID-19 has been reported to differ among SARS-CoV-2 mutant variants. The overactivation of macrophages is involved in severe COVID-19, yet the effects of SARS-CoV-2 mutations on macrophages remain poorly understood. To clarify the effects, we examined whether mutations of spike proteins (S-proteins) affect macrophage activation. CD14+ monocyte-derived macrophages were stimulated with the recombinant S-protein of the wild-type, Delta, and Omicron strains or live viral particles of individual strains. Regarding IL-6 and TNF-α, Delta or Omicron S-protein had stronger or weaker pro­inflammatory ability, respectively, than the wild-type. Similar trends were observed between S-proteins and viral particles. S-protein mutations could be related to the diversity in macrophage activation and severity rates in COVID-19 caused by various SARS-CoV-2 strains.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Mutadas de Ataxia Telangiectasia
2.
NEJM Evid ; 3(3): EVIDoa2300290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411447

RESUMO

Mpox Neutralizing Antibody Response to LC16m8 VaccineIn this study of 50 healthy volunteers in Japan, a smallpox vaccine (LC16m8) exhibited a robust neutralizing antibody response against two strains of the mpox virus. With a 94% "take" rate by day 14, seroconversion rates on day 28 were 72 and 70% against the Zr599 and Liberia strains, respectively, decreasing to 30% for both on day 168; no serious adverse events occurred.


Assuntos
Mpox , Vacina Antivariólica , Vacinas , Adulto , Humanos , Anticorpos Neutralizantes , Antígenos Virais
3.
J Infect Chemother ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38184107

RESUMO

Immunocompromised patients with hematologic malignancies, particularly those treated with anti-CD20 antibodies such as rituximab and obinutuzumab, are known to be at risk of prolonged infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prolonged administration or combination therapy with antiviral medications reportedly yields favorable outcomes in these patients. However, knowledge regarding the adverse events associated with such therapeutic approaches is limited. Herein, we report a case of acute acalculous cholecystitis (AAC) following extended administration of nirmatrelvir/ritonavir (NMV/r) in a 68-year-old Japanese man with persistent SARS-CoV-2 infection. The patient had received obinutuzumab and bendamustine for follicular lymphoma and was diagnosed with coronavirus disease 2019 (COVID-19) approximately one year after treatment initiation with these drugs. Subsequently, he was admitted to a different hospital, where he received antiviral drugs, monoclonal antibodies, and steroids. Despite these interventions, the patient relapsed and was subsequently transferred to our hospital due to persistent SARS-CoV-2 infection. Remdesivir administration was ineffective, leading to the initiation of extended NMV/r therapy. One week later, he exhibited elevated gamma-glutamyl transpeptidase (GGT) levels, and one month later, he developed AAC. Cholecystitis was successfully resolved via percutaneous transhepatic gallbladder drainage and administration of antibiotics. We speculate that extended NMV/r administration, in addition to COVID-19, may have contributed to the elevated GGT and AAC. During treatment of persistent SARS-CoV-2 infection with extended NMV/r therapy, patients should be carefully monitored for the appearance of findings suggestive of biliary stasis and the development of AAC.

4.
Phys Eng Sci Med ; 47(1): 135-142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37902935

RESUMO

A dual-isotope simultaneous acquisition (DISA) of 99mTc and 18F affects the image quality of 99mTc by crosstalk and spill-over from 18F. We demonstrated the influence of spill-over and crosstalk on image quality and its correction effect for DISA SPECT with 99mTc and 18F. A fillable cylindrical chamber of 30 mm with NEMA-NU4 image quality phantom was filled with 99mTc only or a mixed 99mTc and 18F solution (C100). Two small-region chambers were filled with 99mTc only or a mixed 99mTc and 18F solution made at half the radioactivity concentration of C100 (C50) and non-radioactive water (C0). The 18F/99mTc ratio for DISA was set at approximately 0.4-12. Two types of 99mTc transverse images with and without scatter correction (SC and nonSC) were created. The 99mTc images of single-isotope acquisition (SIA) were created as a reference. The DISA/SIA ratio and contrast of 99mTc were compared between SIA and DISA. Although the DISA/SIA ratios with nonSC of C100, C50 and C0 gradually increased with increasing 18F/99mTc ratio, it was nearly constant by SC. The contrasts of C100 and C50 were similar to a reference value for both nonSC and SC. In conclusion, DISA images showed lower image quality as the 18F/99mTc ratio increased. The image quality in hot-spot regions such as C100 and C50 was improved by SC, whereas cold-spot regions such as C0 could not completely remove the influence of spill-over even with SC.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Animais , Fluordesoxiglucose F18 , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagens de Fantasmas
5.
Proc Natl Acad Sci U S A ; 120(52): e2314808120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134196

RESUMO

Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Eliminação de Partículas Virais , Formação de Anticorpos , Tempo de Reação , Anticorpos Antivirais , RNA Viral , Imunoglobulina G , Imunoglobulina A , Imunoglobulina A Secretora
6.
Front Cardiovasc Med ; 10: 1261330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745108

RESUMO

Introduction: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a promising treatment for heart failure. Information on long-term cell engraftment after transplantation is clinically important. However, clinically applicable evaluation methods have not yet been established. Methods: In this study, to noninvasively assess transplanted cell engraftment, human SLC5A5, which encodes a sodium/iodide symporter (NIS) that transports radioactive tracers such as 125I, 18F-tetrafluoroborate (TFB), and 99mTc-pertechnetate (99mTcO4-), was transduced into human induced pluripotent stem cells (iPSCs), and nuclear medicine imaging was used to track engrafted human iPSC-CMs. Results: To evaluate the pluripotency of NIS-expressing human iPSCs, they were subcutaneously transplanted into immunodeficient rats. Teratomas were detected by 99mTcO4- single photon emission computed tomography (SPECT/CT) imaging. NIS expression and the uptake ability of 125I were maintained in purified human iPSC-CMs. NIS-expressing human iPSC-CMs transplanted into immunodeficient rats could be detected over time using 99mTcO4- SPECT/CT imaging. Unexpectedly, NIS expression affected cell proliferation of human iPSCs and iPSC-derived cells. Discussion: Such functionally designed iPSC-CMs have potential clinical applications as a noninvasive method of grafted cell evaluation, but further studies are needed to determine the effects of NIS transduction on cellular characteristics and functions.

7.
PLoS One ; 18(9): e0291670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37725623

RESUMO

The COVID-19 antibody test was developed to investigate the humoral immune response to SARS-CoV-2 infection. In this study, we examined whether S antibody titers measured using the anti-SARS-CoV-2 IgG II Quant assay (S-IgG), a high-throughput test method, reflects the neutralizing capacity acquired after SARS-CoV-2 infection or vaccination. To assess the antibody dynamics and neutralizing potency, we utilized a total of 457 serum samples from 253 individuals: 325 samples from 128 COVID-19 patients including 136 samples from 29 severe/critical cases (Group S), 155 samples from 71 mild/moderate cases (Group M), and 132 samples from 132 health care workers (HCWs) who have received 2 doses of the BNT162b2 vaccinations. The authentic virus neutralization assay, the surrogate virus neutralizing antibody test (sVNT), and the Anti-N SARS-CoV-2 IgG assay (N-IgG) have been performed along with the S-IgG. The S-IgG correlated well with the neutralizing activity detected by the authentic virus neutralization assay (0.8904. of Spearman's rho value, p < 0.0001) and sVNT (0.9206. of Spearman's rho value, p < 0.0001). However, 4 samples (2.3%) of S-IgG and 8 samples (4.5%) of sVNT were inconsistent with negative results for neutralizing activity of the authentic virus neutralization assay. The kinetics of the SARS-CoV-2 neutralizing antibodies and anti-S IgG in severe cases were faster than the mild cases. All the HCWs elicited anti-S IgG titer after the second vaccination. However, the HCWs with history of COVID-19 or positive N-IgG elicited higher anti-S IgG titers than those who did not have it previously. Furthermore, it is difficult to predict the risk of breakthrough infection from anti-S IgG or sVNT antibody titers in HCWs after the second vaccination. Our data shows that the use of anti-S IgG titers as direct quantitative markers of neutralizing capacity is limited. Thus, antibody tests should be carefully interpreted when used as serological markers for diagnosis, treatment, and prophylaxis of COVID-19.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Bloqueadores , Anticorpos Antivirais , Imunoglobulina G
8.
iScience ; 26(5): 106694, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37124417

RESUMO

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages.

9.
Proc Natl Acad Sci U S A ; 120(22): e2300155120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216518

RESUMO

Obesity has been recognized as one of the most significant risk factors for the deterioration and mortality associated with COVID-19, but the significance of obesity itself differs among ethnicity. Multifactored analysis of our single institute-based retrospective cohort revealed that high visceral adipose tissue (VAT) burden, but not other obesity-associated markers, was related to accelerated inflammatory responses and the mortality of Japanese COVID-19 patients. To elucidate the mechanisms how VAT-dominant obesity induces severe inflammation after severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, we infected two different strains of obese mice, C57BL/6JHamSlc-ob/ob (ob/ob), C57BLKS/J-db/db (db/db), genetically impaired in the leptin ligand and receptor, respectively, and control C57BL/6 mice with mouse-adapted SARS-CoV-2. Here, we revealed that VAT-dominant ob/ob mice were extremely more vulnerable to SARS-CoV-2 due to excessive inflammatory responses when compared to SAT-dominant db/db mice. In fact, SARS-CoV-2 genome and proteins were more abundant in the lungs of ob/ob mice, engulfed in macrophages, resulting in increased cytokine production including interleukin (IL)-6. Both an anti-IL-6 receptor antibody treatment and the prevention of obesity by leptin replenishment improved the survival of SARS-CoV-2-infected ob/ob mice by reducing the viral protein burden and excessive immune responses. Our results have proposed unique insights and clues on how obesity increases the risk of cytokine storm and death in patients with COVID-19. Moreover, earlier administration of antiinflammatory therapeutics including anti-IL-6R antibody to VAT-dominant patients might improve clinical outcome and stratification of the treatment for COVID-19, at least in Japanese patients.


Assuntos
COVID-19 , Malus , Camundongos , Animais , Leptina/genética , Citocinas , COVID-19/complicações , Estudos Retrospectivos , SARS-CoV-2 , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/genética , Interleucina-6 , Camundongos Obesos
10.
iScience ; 26(2): 105969, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687316

RESUMO

The immune responses to SARS-CoV-2 variants in COVID-19 cases are influenced by various factors including pre-existing immunity via vaccination and prior infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants, including the Omicron sub-lineage BA.4/5. This study revealed that the magnitude and breadth of neutralization activity to SARS-CoV-2 variants after breakthrough infections are determined primarily by upper respiratory viral load and vaccination-infection time interval. Extensive neutralizing breadth, covering even the most antigenically distant BA.4/5, was observed in cases with higher viral load and longer time intervals. Antigenic cartography depicted a critical role of the time interval in expanding the breadth of neutralization to SARS-CoV-2 variants. Our results illustrate the importance of dosing interval optimization as well as antigen design in developing variant-proof booster vaccines.

11.
J Infect Chemother ; 29(2): 223-227, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36379403

RESUMO

Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is being increasingly recognized as a severe complication that contributes to poor prognoses among patients with COVID-19. However, little is known regarding the clinical course of CAPA with hematological malignancies, especially after allogeneic hematopoietic stem cell transplantation (HSCT). A 29-year-old woman was diagnosed with proven CAPA with an Aspergillus fumigatus identified by cultures of bronchoalveolar lavage and lung biopsy four years after haploidentical HSCT for acute myelogenous leukemia. She had been taking oral prednisolone for bronchiolitis obliterans syndrome that developed after HSCT. Although prolonged RT-PCR positivity for SARS-CoV-2 (133 days after the onset of COVID-19) without shedding of viable virus was observed, the COVID-19 was treated with favipiravir, remdesivir, dexamethasone, and enoxaparin. However, the CAPA did not respond to combination therapy, which included triazole (voriconazole, itraconazole, posaconazole) and echinocandin (caspofungin, micafungin), even though the Aspergillus fumigatus isolate was found to be susceptible to these agents in vitro. Nevertheless, a total of 16 weeks of liposomal amphotericin B (L-AMB) therapy led to a favorable response, and the patient was discharged from the hospital on day 213. This case provided essential experience of CAPA treated with L-AMB in a recipient with chronic respiratory disease after HSCT.


Assuntos
Síndrome de Bronquiolite Obliterante , COVID-19 , Transplante de Células-Tronco Hematopoéticas , Aspergilose Pulmonar , Feminino , Humanos , Adulto , Antifúngicos/uso terapêutico , COVID-19/complicações , SARS-CoV-2 , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Aspergillus fumigatus
12.
Ann Nucl Med ; 36(12): 1031-1038, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227465

RESUMO

BACKGROUND: Myocardial phantom studies are widely used as a tool to accurately assess the physical phenomenon of dual-isotope simultaneous acquisition (DISA) in the small-animal fields. However, the previous phantom did not reproduce the structures of rats or mice. The aim of this study was to develop a novel myocardial phantom simulating the structure of a small animal that can be evaluated using the image quality of DISA. METHODS: A novel small-animal myocardial phantom that simulated a rat was constructed by the myocardium, liver, lung, spine, and torso. Normal and inferior wall defect myocardial phantoms were filled with 99mTc or 18F solution to simulate single-isotope acquisition (SIA) and DISA. Phantom and small-animal images with no scatter correction (nonSC) and scatter correction (SC) were created. RESULTS: The 99mTc DISA with SC showed a low %CV compared to that with nonSC. Although the 99mTc DISA with nonSC had lower cavity contrast than that of 99mTc SIA with nonSC, the cavity contrast of SC had similar values between SIA and DISA. The minimum %uptake of 99mTc SIA with nonSC was a lower value compared to that of 99mTc DISA with nonSC. The 99mTc DISA was equivalent to the minimum %uptake of 99mTc SIA by SC. CONCLUSION: We have developed a novel myocardial phantom for the rat model to evaluate the image quality for reproducing the physical phenomenon associated with radiation attenuation and scattering. Furthermore, we could demonstrate the usefulness of the novel small-animal myocardial phantom by image quality evaluation of DISA with 99mTc and 18F compared to SIA.


Assuntos
Fluordesoxiglucose F18 , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Ratos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagens de Fantasmas , Miocárdio , Isótopos , Compostos Radiofarmacêuticos , Coração/diagnóstico por imagem
13.
Sci Rep ; 12(1): 14909, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050347

RESUMO

COVID-19 antibody testing has been developed to investigate humoral immune response in SARS-CoV-2 infection. To assess the serological dynamics and neutralizing potency following SARS-CoV-2 infection, we investigated the neutralizing (NT) antibody, anti-spike, and anti-nucleocapsid antibodies responses using a total of 168 samples obtained from 68 SARS-CoV-2 infected patients. Antibodies were measured using an authentic virus neutralization assay, the high-throughput laboratory measurements of the Abbott Alinity quantitative anti-spike receptor-binding domain IgG (S-IgG), semiquantitative anti-spike IgM (S-IgM), and anti-nucleocapsid IgG (N-IgG) assays. The quantitative measurement of S-IgG antibodies was well correlated with the neutralizing activity detected by the neutralization assay (r = 0.8943, p < 0.0001). However, the kinetics of the SARS-CoV-2 NT antibody in severe cases were slower than that of anti-S and anti-N specific antibodies. These findings indicate a limitation of using the S-IgG antibody titer, detected by the chemiluminescent immunoassay, as a direct quantitative marker of neutralizing activity capacity. Antibody testing should be carefully interpreted when utilized as a marker for serological responses to facilitate diagnostic, therapeutic, and prophylactic interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Teste para COVID-19 , Humanos , Imunoglobulina G , Imunoglobulina M , Sensibilidade e Especificidade
14.
Vaccine ; 40(41): 5892-5903, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36064667

RESUMO

To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Administração Intranasal , Compostos de Alúmen , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina A Secretora , Imunoglobulina G , Pulmão , Camundongos , Oligonucleotídeos , Glicoproteína da Espícula de Coronavírus , Vacinação
15.
PLoS One ; 17(9): e0274181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107911

RESUMO

Quantitative measurement of SARS-CoV-2 neutralizing antibodies is highly expected to evaluate immune status, vaccine response, and antiviral therapy. The Elecsys® Anti-SARS-CoV-2 S (Elecsys® anti-S) was developed to measure anti-SARS-CoV-2 S proteins. We sought to investigate whether Elecsys® anti-S can be used to predict neutralizing activities in patients' serums using an authentic virus neutralization assay. One hundred forty-six serum samples were obtained from 59 patients with COVID-19 at multiple time points. Of the 59 patients, 44 cases were included in Group M (mild 23, moderate 21) and produced 84 samples (mild 35, moderate 49), while 15 cases were included in Group S (severe 11, critical 4) and produced 62 samples (severe 43, critical 19). The neutralization assay detected 73% positive cases, and Elecsys® anti-S and Elecsys® Anti-SARS-CoV-2 (Elecsys® anti-N) showed 72% and 66% positive cases, respectively. A linear correlation between the Elecsys® anti-S assay and the neutralization assay were highly correlated (r = 0.7253, r2 = 0.5261) than a linear correlation between the Elecsys® anti-N and neutralization assay (r = 0.5824, r2 = 0.3392). The levels of Elecsys® anti-S antibody and neutralizing activities were significantly higher in Group S than in Group M after 6 weeks from onset of symptoms (p < 0.05). Conversely, the levels of Elecsys® anti-N were comparable in both groups. Three immunosuppressed patients, including cancer patients, showed low levels of anti-S and anti-N antibodies and neutralizing activities throughout the measurement period, indicating the need for careful follow-up. Our data indicate that Elecsys® anti-S can predict the neutralization antibodies in COVID-19.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , Antivirais , COVID-19/diagnóstico , Humanos , Imunoensaio , Testes de Neutralização , SARS-CoV-2
16.
J Infect Chemother ; 28(7): 962-964, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35461768

RESUMO

There have been several reports of breakthrough infections, which are defined as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among individuals who had received at least two doses of vaccine at least 14 days before the onset of infection, but data on the antibody titers, including SARS-CoV-2 neutralizing antibody activity, and the clinical course of individuals with breakthrough infections are limited. We encountered a case of breakthrough infection with the SARS-CoV-2 delta variant in a 31-year-old female healthcare worker (the index case, Case 1) and a secondary case (Case 2) in her unvaccinated 33-year-old husband. We studied the role of the anti-spike immunoglobulin G (IgG) and neutralizing antibody activity in the two case patients. Case 1 had high anti-spike IgG detected on day 3 of the illness, with low neutralizing antibody activity. The neutralizing antibody activity started to increase on day 5 of the illness. In Case 2 both the anti-spike IgG and the neutralizing antibody activity remained low from days 4-11 of illness, and the anti-spike IgG gradually increased from day 9. In Case 1, the fever broke within 4 days of onset, coinciding with the rise in neutralizing antibodies, whereas the fever took 7 days to resolve in Case 2. SARS-CoV-2 infection can occur even in vaccinated individuals, but vaccination may contribute to milder clinical symptoms because neutralizing antibodies are induced earlier in vaccinated individuals than in unvaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Humanos , Imunoglobulina G , Vacinação
17.
BMC Pediatr ; 22(1): 132, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287620

RESUMO

BACKGROUND: Kawasaki disease (KD) is an acute, febrile, systemic vasculitis of unknown etiology that primarily affects the coronary arteries and generally occurs at around 1 year of age. Although the diagnosis of KD is generally not difficult, it is challenging in cases of incomplete KD lacking characteristic clinical manifestations. The incidence of incomplete KD is higher in infants younger than 6 months of age. Pneumonia is an extremely rare complication of KD and can be misinterpreted as atypical pneumonia rather than KD. Herein, we report a neonate with atypical KD and severe pneumonia who required mechanical ventilation. CASE PRESENTATION: Japanese one-month-old infant had only fever and rash on admission (day 1), and he was transferred to the intensive care unit for severe pneumonia on day 2. Although pneumonia improved following intensive care, he was diagnosed with KD on day 14 because of emerging typical clinical manifestations such as fever, bulbar nonexudative conjunctival injection, desquamation of the fingers, and coronary artery aneurysm. KD symptoms improved after three doses of intravenous immunoglobulin plus cyclosporine. However, small coronary aneurysms were present at the time of discharge. In a retrospective analysis, no pathogens were detected by multiplex real-time PCR in samples collected at admission, and the serum cytokine profile demonstrated prominent elevation of IL-6 as well as elevation of neopterin, sTNF-RI, and sTNF-RII, which suggested KD. CONCLUSIONS: The patient's entire clinical course, including the severe pneumonia, was caused by KD. As in this case, neonatal KD may exhibit atypical manifestations such as severe pneumonia requiring mechanical ventilation.


Assuntos
Aneurisma Coronário , Síndrome de Linfonodos Mucocutâneos , Pneumonia , Aneurisma Coronário/diagnóstico por imagem , Aneurisma Coronário/etiologia , Febre/etiologia , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Lactente , Recém-Nascido , Masculino , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Pneumonia/tratamento farmacológico , Estudos Retrospectivos
18.
Emerg Infect Dis ; 28(5): 998-1001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290176

RESUMO

To determine virus shedding duration, we examined clinical samples collected from the upper respiratory tracts of persons infected with severe acute respiratory syndrome coronavirus 2 Omicron variant in Japan during November 29-December 18, 2021. Vaccinees with mild or asymptomatic infection shed infectious virus 6-9 days after onset or diagnosis, even after symptom resolution.


Assuntos
COVID-19 , Doenças Transmissíveis , Infecções Assintomáticas , Humanos , SARS-CoV-2 , Eliminação de Partículas Virais
19.
Med ; 3(4): 249-261.e4, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35261995

RESUMO

Background: The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods: The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings: Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions: Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding: This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Complicações Pós-Operatórias , Vacinação
20.
J Infect Chemother ; 28(7): 971-974, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35184976

RESUMO

Corticosteroids are widely used to treat severe COVID-19, but in immunocompromised individuals, who are susceptible to persistent infection, long term corticosteroid use may delay viral clearance. We present a case of prolonged SARS-CoV-2 infection in a man with significantly impaired B-cell immunity due to non-Hodgkin lymphoma which had been treated with rituximab. SARS-CoV-2 shedding persisted, despite treatment with remdesivir. Viral sequencing confirmed the persistence of the same viral strain, ruling out the possibility of reinfection. Although SARS-CoV-2 IgG, IgA and IgM remained negative throughout the treatment period, after reduction of the corticosteroid dose, PCR became negative. Long-term corticosteroid treatment, especially in immunocompromised individuals, may result in suppression of cell-mediated immunity and prolonged SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos Antivirais , Humanos , Hospedeiro Imunocomprometido , Masculino , Rituximab/efeitos adversos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA