Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochem Biophys Res Commun ; 714: 149970, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663097

RESUMO

Movement dynamics in the nucleus involve various biological processes, including DNA repair, which is crucial for cancer prevention. Changes in the movement of the components of the nucleus indicate the changes in movement dynamics in the nucleus. In Schizosaccharomyces pombe, the inner nuclear membrane protein Bqt4 plays an essential role in attaching telomeres to the nuclear envelope. We observed that the deletion of bqt4+ caused a significant decrease in the mean square displacement (MSD) calculated from the distance between the nucleolar center and spindle pole body (SPB), hereafter referred to as MSD(SPB-Nucleolus). The MSD(SPB-Nucleolus) decrease in bqt4Δ was microtubule-dependent. The Rap1-binding ability loss mutant, bqt4F46A, and nonspecific DNA-binding ability mutants, bqt43E-A, did not exhibit an MSD(SPB-Nucleolus) decrease compared to the WT. Moreover, the bqt43E-Arap1Δ double mutant and 1-262 amino acids truncated mutant bqt4ΔN (263-432), which does not have either Rap1-binding or nonspecific DNA-binding abilities, did not exhibit the MSD(SPB-Nucleolus) decrease to the same extent as bqt4Δ. These results suggest that the unknown function of Bqt4 in the C-terminal domain is essential for the maintenance of the pattern of relative movement between SPB and the nucleolus.


Assuntos
Nucléolo Celular , Proteínas de Ligação a DNA , Proteínas Nucleares , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Corpos Polares do Fuso , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Nucléolo Celular/metabolismo , Corpos Polares do Fuso/metabolismo , Mutação , Microtúbulos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ligação Proteica
2.
Genes Genet Syst ; 98(3): 155-160, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648502

RESUMO

Eukaryotic cells contain multiple types of duplicated sequences. Typical examples are tandem repeat sequences including telomeres, centromeres, rDNA genes and transposable elements. Most of these sequences are unstable; thus, their copy numbers or sequences change rapidly in the course of evolution. In this review, I will describe roles of subtelomere regions, which are located adjacent to telomeres at chromosome ends, and recent discoveries about their sequence variation.


Assuntos
Centrômero , Telômero , Telômero/genética , Centrômero/genética , Heterocromatina
3.
Biomolecules ; 13(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238680

RESUMO

Eukaryotes have linear chromosomes with domains called telomeres at both ends. The telomere DNA consists of a simple tandem repeat sequence, and multiple telomere-binding proteins including the shelterin complex maintain chromosome-end structures and regulate various biological reactions, such as protection of chromosome ends and control of telomere DNA length. On the other hand, subtelomeres, which are located adjacent to telomeres, contain a complex mosaic of multiple common segmental sequences and a variety of gene sequences. This review focused on roles of the subtelomeric chromatin and DNA structures in the fission yeast Schizosaccharomyces pombe. The fission yeast subtelomeres form three distinct chromatin structures; one is the shelterin complex, which is localized not only at the telomeres but also at the telomere-proximal regions of subtelomeres to form transcriptionally repressive chromatin structures. The others are heterochromatin and knob, which have repressive effects in gene expression, but the subtelomeres are equipped with a mechanism that prevents these condensed chromatin structures from invading adjacent euchromatin regions. On the other hand, recombination reactions within or near subtelomeric sequences allow chromosomes to be circularized, enabling cells to survive in telomere shortening. Furthermore, DNA structures of the subtelomeres are more variable than other chromosomal regions, which may have contributed to biological diversity and evolution while changing gene expression and chromatin structures.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , DNA/metabolismo
5.
Nucleic Acids Res ; 49(18): 10465-10476, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520548

RESUMO

Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.


Assuntos
DNA Fúngico/química , DNA Ribossômico/química , Sequências Repetitivas de Ácido Nucleico , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteínas de Ligação a DNA/genética , Viabilidade Microbiana , Mutação , Recombinação Genética , Reparo de DNA por Recombinação , Proteínas de Schizosaccharomyces pombe/genética , Telômero , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
6.
Nat Commun ; 12(1): 611, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504776

RESUMO

Genome sequences have been determined for many model organisms; however, repetitive regions such as centromeres, telomeres, and subtelomeres have not yet been sequenced completely. Here, we report the complete sequences of subtelomeric homologous (SH) regions of the fission yeast Schizosaccharomyces pombe. We overcame technical difficulties to obtain subtelomeric repetitive sequences by constructing strains that possess single SH regions of a standard laboratory strain. In addition, some natural isolates of S. pombe were analyzed using previous sequencing data. Whole sequences of SH regions revealed that each SH region consists of two distinct parts with mosaics of multiple common segments or blocks showing high variation among subtelomeres and strains. Subtelomere regions show relatively high frequency of nucleotide variations among strains compared with the other chromosomal regions. Furthermore, we identified subtelomeric RecQ-type helicase genes, tlh3 and tlh4, which add to the already known tlh1 and tlh2, and found that the tlh1-4 genes show high sequence variation with missense mutations, insertions, and deletions but no severe effects on their RNA expression. Our results indicate that SH sequences are highly polymorphic and hot spots for genome variation. These features of subtelomeres may have contributed to genome diversity and, conversely, various diseases.


Assuntos
Variação Genética , Genoma Fúngico , Schizosaccharomyces/genética , Telômero/genética , Sequência de Bases , Mutação INDEL/genética , Mosaicismo , Família Multigênica , Nucleotídeos/genética , Filogenia , RNA Fúngico/genética , RecQ Helicases/genética , Schizosaccharomyces/isolamento & purificação
7.
Sci Rep ; 9(1): 9946, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289327

RESUMO

DNA replication is initiated at replication origins on chromosomes at their scheduled time during S phase of the cell cycle. Replication timing control is highly conserved among eukaryotes but the underlying mechanisms are not fully understood. Recent studies have revealed that some telomere-binding proteins regulate replication timing at late-replicating origins throughout the genome. To investigate the molecular basis of this process, we analyzed the effects of excessive elongation of telomere DNA on replication timing by deleting telomere-associated shelterin proteins in Schizosaccharomyces pombe. We found that rap1∆ and poz1∆ cells showed abnormally accelerated replication at internal late origins but not at subtelomere regions. These defects were suppressed by removal of telomere DNA and by deletion of the telomere-binding protein Taz1. Furthermore, Sds21-a counter protein phosphatase against Dbf4-dependent kinase (DDK)-accumulated at elongated telomeres in a Taz1-dependent manner but was depleted at internal late origins, indicating that highly elongated telomeres sequester Sds21 at telomeres and perturb replication timing at internal regions. These results demonstrate that telomere DNA length is an important determinant of replication timing at internal regions of chromosomes in eukaryotes.


Assuntos
Período de Replicação do DNA/genética , DNA Fúngico/metabolismo , Origem de Replicação , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Telômero/genética , Ciclo Celular , DNA Fúngico/genética , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
Nucleic Acids Res ; 47(13): 6871-6884, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31131414

RESUMO

Telomeres located at the ends of linear chromosomes play important roles in the maintenance of life. Rap1, a component of the shelterin telomere protein complex, interacts with multiple proteins to perform various functions; further, formation of shelterin requires Rap1 binding to other components such as Taz1 and Poz1, and telomere tethering to the nuclear envelope (NE) involves interactions between Rap1 and Bqt4, a nuclear membrane protein. Although Rap1 is a hub for telomere protein complexes, the regulatory mechanisms of its interactions with partner proteins are not fully understood. Here, we show that Rap1 is phosphorylated by casein kinase 2 (CK2) at multiple sites, which promotes interactions with Bqt4 and Poz1. Among the multiple CK2-mediated phosphorylation sites of Rap1, phosphorylation at Ser496 was found to be crucial for both Rap1-Bqt4 and Rap1-Poz1 interactions. These mechanisms mediate proper telomere tethering to the NE and the formation of the silenced chromatin structure at chromosome ends.


Assuntos
Caseína Quinase II/fisiologia , Membrana Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteína Quinase CDC2/fisiologia , Ciclo Celular , Cromatina/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas de Membrana/metabolismo , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Complexo Shelterina
9.
Genes Cells ; 24(7): 511-517, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31095817

RESUMO

Centromeres play crucial roles in faithful chromosome segregation and genome integrity. In simian primates, centromeres possess tandem array of alpha satellite DNA (also referred to as alphoid DNA). Average sizes of alpha satellite repeat units vary between species, for example, 171 bp in human and 343-344 bp in many platyrrhini species (New World monkeys). Interestingly, Azara's owl monkey (Aotus azarae), a platyrrhini species, possesses alpha satellite DNA of two distinct unit sizes, OwlAlp1 (185 bp) and OwlAlp2 (344 bp), both of which present as megasatellite DNAs in the genome. It is, however, unknown which repeat sequence is responsible for functional centromere formation. To investigate the localization of centromeres in vivo, we carried out chromatin immunoprecipitation (ChIP) assay using Azara's owl monkey cells. We found that CENP-A, a histone H3 variant essential for centromere formation, was enriched at OwlAlp1, but not at OwlAlp2. Moreover, CENP-A was detected only at constricted regions of chromosomes by immunofluorescent microscopy. In contrast, trimethylation of histone H3-K9 (H3K9me3), a marker of heterochromatin, was enriched at both OwlAlp1 and OwlAlp2. Our results show that the shorter alpha satellite repeat, OwlAlp1, is selectively used for centromere formation in this monkey.


Assuntos
Aotidae/genética , Proteína Centromérica A/metabolismo , Centrômero , DNA Satélite , Heterocromatina , Animais , Células Cultivadas , Proteína Centromérica A/genética , Proteína Centromérica A/imunologia , Imunoprecipitação da Cromatina , Histonas/genética , Humanos
10.
Structure ; 27(2): 335-343.e3, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30503780

RESUMO

Telomeres, the protective caps at the end of the chromosomes, are often associated with the nuclear envelope (NE). Telomere positioning to the NE is dynamically regulated during mitosis and meiosis. One inner nuclear membrane protein, Bqt4, in Schizosaccharomyces pombe plays essential roles in connecting telomeres to the NE. However, the structural basis of Bqt4 in mediating telomere-NE association is not clear. Here, we report the crystal structure of the N-terminal domain of Bqt4. The N-terminal domain of Bqt4 structurally resembles the APSES-family DNA-binding domain and has a moderate double-stranded DNA-binding activity. Disruption of Bqt4-DNA interaction results in telomere detachment from the NE. These data suggest that the DNA-binding activity of Bqt4 may function to prime the chromosome onto the NE and promote telomere-NE association.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Telômero/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Cristalografia por Raios X , Meiose , Mitose , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
11.
Nucleic Acids Res ; 47(3): 1573-1584, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462301

RESUMO

The dynamic association of chromosomes with the nuclear envelope (NE) is essential for chromosome maintenance. Schizosaccharomyces pombe inner nuclear membrane protein Bqt4 plays a critical role in connecting telomeres to the NE, mainly through a direct interaction with the telomeric protein Rap1. Bqt4 also interacts with Lem2 for pericentric heterochromatin maintenance. How Bqt4 coordinates the interactions with different proteins to exert their functions is unclear. Here, we report the crystal structures of the N-terminal domain of Bqt4 in complexes with Bqt4-binding motifs from Rap1, Lem2, and Sad1. The structural, biochemical and cellular analyses reveal that the N-terminal domain of Bqt4 is a protein-interaction module that recognizes a consensus motif and plays essential roles in telomere-NE association and meiosis progression. Phosphorylation of Bqt4-interacting proteins may act as a switch to regulate these interactions during cell cycles. Our studies provide structural insights into the identification and regulation of Bqt4-mediated interactions.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Telômero/genética , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/química , Proteínas de Membrana/química , Membrana Nuclear/química , Proteínas Nucleares/química , Fosforilação , Mapas de Interação de Proteínas/genética , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química
12.
Genes Genet Syst ; 92(3): 127-133, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28794351

RESUMO

A chromosome is composed of structurally and functionally distinct domains. Telomeres, which are located at the ends of linear chromosomes, play crucial roles in genome stability. Although substantial knowledge of telomeres has been accumulated, the regulation and function of subtelomeres, which are the domains adjacent to telomeres, remain largely unknown. In this review, I describe recent discoveries about the multiple roles of a shugoshin family protein, Sgo2, which is localized at centromeres in mitosis and contributes to precise chromosome segregation, in defining chromatin structure and functions of the subtelomeres in fission yeast. Sgo2 becomes enriched at the subtelomeres, particularly during G2 phase, and is essential for the formation of a highly condensed subtelomeric chromatin body called the knob. Furthermore, Sgo2 maintains the expression levels of subtelomeric genes and the timing of DNA replication at subtelomeric late origins.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Fase G2/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Telômero/metabolismo , Centrômero/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , DNA Fúngico/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Telômero/genética
13.
Cell Res ; 27(12): 1503-1520, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29160296

RESUMO

Telomeric shelterin complex caps chromosome ends and plays a crucial role in telomere maintenance and protection. In the fission yeast Schizosaccharomyces pombe, shelterin is composed of telomeric single- and double-stranded DNA-binding protein subcomplexes Pot1-Tpz1 and Taz1-Rap1, which are bridged by their interacting protein Poz1. However, the structure of Poz1 and how Poz1 functions as an interaction hub in the shelterin complex remain unclear. Here we report the crystal structure of Poz1 in complex with Poz1-binding motifs of Tpz1 and Rap1. The crystal structure shows that Poz1 employs two different binding surfaces to interact with Tpz1 and Rap1. Unexpectedly, the structure also reveals that Poz1 adopts a dimeric conformation. Mutational analyses suggest that proper interactions between Tpz1, Poz1, and Rap1 in the shelterin core complex are required for telomere length homeostasis and heterochromatin structure maintenance at telomeres. Structural resemblance between Poz1 and the TRFH domains of other shelterin proteins in fission yeast and humans suggests a model for the evolution of shelterin proteins.


Assuntos
Proteínas de Transporte/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Proteínas de Ligação a Telômeros/química , Telômero/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Ligação a DNA , Conformação Proteica , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/isolamento & purificação
14.
Nucleic Acids Res ; 45(18): 10333-10349, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28981863

RESUMO

The subtelomere, a telomere-adjacent chromosomal domain, contains species-specific homologous DNA sequences, in addition to various genes. However, the functions of subtelomeres, particularly subtelomeric homologous (SH) sequences, remain elusive. Here, we report the first comprehensive analyses of the cellular functions of SH sequences in the fission yeast, Schizosaccharomyces pombe. Complete removal of SH sequences from the genome revealed that they are dispensable for mitosis, meiosis and telomere length control. However, when telomeres are lost, SH sequences prevent deleterious inter-chromosomal end fusion by facilitating intra-chromosomal circularization. Surprisingly, SH-deleted cells sometimes survive telomere loss through inter-chromosomal end fusions via homologous loci such as LTRs, accompanied by centromere inactivation of either chromosome. Moreover, SH sequences function as a buffer region against the spreading of subtelomeric heterochromatin into the neighboring gene-rich regions. Furthermore, we found a nucleosome-free region at the subtelomeric border, which may be a second barrier that blocks heterochromatin spreading into the subtelomere-adjacent euchromatin. Thus, our results demonstrate multiple defense functions of subtelomeres in chromosome homeostasis and gene expression.


Assuntos
Cromossomos Fúngicos/fisiologia , Expressão Gênica , Homeostase/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Telômero/fisiologia , Centrômero/metabolismo , Instabilidade Cromossômica/genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Organismos Geneticamente Modificados , Deleção de Sequência , Proteínas de Ligação a Telômeros/metabolismo
16.
Genes Cells ; 22(1): 59-70, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27935167

RESUMO

An evolutionarily conserved protein Tel2 regulates a variety of stress signals. In mammals, TEL2 associates with TTI1 and TTI2 to form the Triple T (TTT: TEL2-TTI1-TTI2) complex as well as with all the phosphatidylinositol 3-kinase-like kinases (PIKKs) and the R2TP (Ruvbl1-Ruvbl2-Tah1-Pih1 in budding yeast)/prefoldin-like complex that associates with HSP90. The phosphorylation of TEL2 by casein kinase 2 (CK2) enables direct binding of PIHD1 (mammalian Pih1) to TEL2 and is important for the stability and the functions of PIKKs. However, the regulatory mechanisms of Tel2 in fission yeast Schizosaccharomyces pombe remain largely unknown. Here, we report that S. pombe Tel2 is phosphorylated by CK2 at Ser490 and Thr493. Tel2 forms the TTT complex with Tti1 and Tti2 and also associates with PIKKs, Rvb2, and Hsp90 in vivo; however, the phosphorylation of Tel2 affects neither the stability of the Tel2-associated proteins nor their association with Tel2. Thus, Tel2 stably associates with its binding partners irrespective of its phosphorylation. Furthermore, the Tel2 phosphorylation by CK2 is not required for the various stress responses to which PIKKs are pivotal. Our results suggest that the Tel2-containing protein complexes are conserved among eukaryotes, but the molecular regulation of their formation has been altered during evolution.


Assuntos
Caseína Quinase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Estresse Fisiológico/genética , Proteínas de Ligação a Telômeros/metabolismo , Caseína Quinase II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética
18.
Nat Commun ; 7: 10393, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26804021

RESUMO

A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body 'knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Período de Replicação do DNA , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Telômero/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Fase G2 , Estrutura Terciária de Proteína , Transporte Proteico , Schizosaccharomyces/química , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genética , Telômero/genética , Transcrição Gênica
20.
J Biol Chem ; 288(26): 19260-8, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671279

RESUMO

General amino acid control (GAAC) is crucial for sensing and adaptation to nutrient availability. Amino acid starvation activates protein kinase Gcn2, which plays a central role in the GAAC response by phosphorylating the α-subunit of eukaryotic initiation factor 2 (eIF2α), leading to the translational switch to stimulate selective expression of stress-responsive genes. We report here that in fission yeast Schizosaccharomyces pombe, Cpc2, a homolog of mammalian receptor for activated C-kinase (RACK1), is important for the GAAC response. Deletion of S. pombe cpc2 impairs the amino acid starvation-induced phosphorylation of eIF2α and the expression of amino acid biosynthesis genes, thereby rendering cells severely sensitive to amino acid limitation. Unlike the Saccharomyces cerevisiae Cpc2 ortholog, which normally suppresses the GAAC response, our findings suggest that S. pombe Cpc2 promotes the GAAC response. We also found that S. pombe Cpc2 is required for starvation-induced Gcn2 autophosphorylation, which is essential for Gcn2 function. These results indicate that S. pombe Cpc2 facilitates the GAAC response through the regulation of Gcn2 activation and provide a novel insight for the regulatory function of RACK1 on Gcn2-mediated GAAC response.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Aminoácidos/metabolismo , Centrifugação com Gradiente de Concentração , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Biossíntese de Proteínas , Receptores de Quinase C Ativada , Ribossomos/metabolismo , Transdução de Sinais , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA