Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
IUBMB Life ; 75(1): 66-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35557488

RESUMO

In the present study, low concentrations of the very mild detergent n-dodecyl-α-d-maltoside in conjunction with sucrose gradient ultracentrifugation were used to prepare fucoxanthin chlorophyll protein (FCP) complexes of the centric diatom Thalassiosira pseudonana. Two main FCP fractions were observed in the sucrose gradients, one in the upper part and one at high sucrose concentrations in the lower part of the gradient. The first fraction was dominated by the 18 kDa FCP protein band in SDS-gels. Since this fraction also contained other protein bands, it was designated as fraction enriched in FCP-A complex. The second fraction contained mainly the 21 kDa FCP band, which is typical for the FCP-B complex. Determination of the lipid composition showed that both FCP fractions contained monogalactosyl diacylglycerol as the main lipid followed by the second galactolipid of the thylakoid membrane, namely digalactosyl diacylglycerol. The negatively charged lipids sulfoquinovosyl diacylglycerol and phosphatidyl glycerol were also present in both fractions in pronounced concentrations. With respect to the pigment composition, the fraction enriched in FCP-A contained a higher amount of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt), whereas the FCP-B fraction was characterized by a lower ratio of xanthophyll cycle pigments to the light-harvesting pigment fucoxanthin. Protein analysis by mass spectrometry revealed that in both FCP fractions the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (DDE) was present. In addition, the analysis showed an enrichment of DDE in the fraction enriched in FCP-A but only a very low amount of DDE in the FCP-B fraction. In-vitro de-epoxidation assays, employing the isolated FCP complexes, were characterized by an inefficient conversion of DD to Dt. However, in line with the heterogeneous DDE distribution, the fraction enriched in FCP-A showed a more pronounced DD de-epoxidation compared with the FCP-B.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Diglicerídeos/metabolismo , Xantofilas
2.
BMC Plant Biol ; 20(1): 456, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023504

RESUMO

BACKGROUND: Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. RESULTS: In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. CONCLUSION: The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.


Assuntos
Proteínas de Ligação à Clorofila/metabolismo , Diatomáceas/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Pigmentos Biológicos/isolamento & purificação , Proteínas de Ligação à Clorofila/genética , Cromatografia por Troca Iônica , Diatomáceas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética
3.
Photosynth Res ; 140(2): 151-171, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30194671

RESUMO

Diatoms contribute about 20-25% to the global marine productivity and are successful autotrophic players in all aquatic ecosystems, which raises the question whether this performance is caused by differences in their photosynthetic apparatus. Photo-CIDNP MAS NMR presents a unique tool to obtain insights into the reaction centres of photosystems (PS), by selective enhancement of NMR signals from both, the electron donor and the primary electron acceptor molecules. Here, we present the first observation of the solid-state photo-CIDNP effect in the pennate diatoms. In comparison to plant PSs, similar spectral patterns have been observed for PS I at 9.4 T and PS II at 4.7 T in the PSs of Phaeodactylum tricornutum. Studies at different magnetic fields reveal a surprising sign change of the 13C photo-CIDNP MAS NMR signals indicating an alternative arrangement of cofactors which allows to quench the Chl a donor triplet state in contrast to the situation in plant PS II. This unusual quenching mechanism is related to a carotenoid molecule in close vicinity to the Chl a donor. In addition to the photo-CIDNP MAS NMR signals arising from the donor and the primary electron acceptor cofactors, a complete set of signals of the imidazole ring ligating to the magnesium of Chl a can be observed.


Assuntos
Diatomáceas/fisiologia , Espectroscopia de Ressonância Magnética , Complexo de Proteína do Fotossistema II/metabolismo , Isótopos de Carbono/análise , Campos Magnéticos , Isótopos de Nitrogênio/análise , Fotossíntese
4.
BMC Plant Biol ; 17(1): 221, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178846

RESUMO

BACKGROUND: The preparation of functional thylakoid membranes from diatoms with a silica cell wall is still a largely unsolved challenge. Therefore, an optimized protocol for the isolation of oxygen evolving thylakoid membranes of the centric diatom Cyclotella meneghiniana has been developed. The buffer used for the disruption of the cells was supplemented with polyethylene glycol based on its stabilizing effect on plastidic membranes. Disruption of the silica cell walls was performed in a French Pressure cell and subsequent linear sorbitol density gradient centrifugation was used to isolate the thylakoid membrane fraction. RESULTS: Spectroscopic characterization of the thylakoids by absorption and 77 K fluorescence spectroscopy showed that the photosynthetic pigment protein complexes in the isolated thylakoid membranes were intact. This was supported by oxygen evolution measurements which demonstrated high electron transport rates in the presence of the artificial electron acceptor DCQB. High photosynthetic activity of photosystem II was corroborated by the results of fast fluorescence induction measurements. In addition to PSII and linear electron transport, indications for a chlororespiratory electron transport were observed in the isolated thylakoid membranes. Photosynthetic electron transport also resulted in the establishment of a proton gradient as evidenced by the quenching of 9-amino-acridine fluorescence. Because of their ability to build-up a light-driven proton gradient, de-epoxidation of diadinoxanthin to diatoxanthin and diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence could be observed for the first time in isolated thylakoid membranes of diatoms. However, the ∆pH, diadinoxanthin de-epoxidation and diatoxanthin-dependent NPQ were weak compared to intact diatom cells or isolated thylakoids of higher plants. CONCLUSIONS: The present protocol resulted in thylakoids with a high electron transport capacity. These thylakoids can thus be used for experiments addressing various aspects of the photosynthetic electron transport by, e.g., employing artificial electron donors and acceptors which do not penetrate the diatom cell wall. In addition, the present isolation protocol yields diatom thylakoids with the potential for xanthophyll cycle and non-photochemical quenching measurements. However, the preparation has to be further refined before these important topics can be addressed systematically.


Assuntos
Fracionamento Celular/métodos , Diatomáceas/metabolismo , Transporte de Elétrons , Eucariotos/metabolismo , Tilacoides , Diatomáceas/citologia , Eucariotos/citologia , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/metabolismo , Xantofilas/metabolismo
5.
Plant Physiol Biochem ; 96: 364-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26368016

RESUMO

The study investigated the influence of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt) on the spectroscopic characteristics, structure and protein composition of isolated fucoxanthin chlorophyll protein (FCP) complexes of the pennate diatom Phaeodactylum tricornutum. 77 K fluorescence emission spectra revealed that Dt-containing FCP complexes showed a characteristic long wavelength fluorescence emission at 700 nm at a pH-value of 5 whereas DD-enriched FCPs retained the typical 680 nm fluorescence emission maximum of isolated FCPs. The 700 nm emission in Dt-containing FCPs indicates an aggregation of antenna complexes and is a typical feature of the quenching site Q1 in recent models for non-photochemical fluorescence quenching (NPQ). A comparable long-wavelength fluorescence emission was found in FCP complexes prepared with either triton X-100 or n-dodecyl ß-D-maltoside as detergent. A treatment of the FCP complexes at low pH-values in the presence of a high concentration of Mg(2+) ions showed that the extent of FCP aggregation which leads to the 700 nm fluorescence emission is different from the macro-aggregation of antenna complexes in higher plants. Protein analyses by mass spectrometry showed that the protein composition of the DD- and Dt-enriched FCP complexes was comparable. However, the Lhcf6 and Lhcr1 polypeptides were only found in Dt-enriched FCPs isolated with dodecyl maltoside whereas the Lhcf17 protein was only detected in DD-enriched FCPs prepared with triton. With respect to low pH-induced antenna aggregation it is important that the Lhcx1 protein was found in both DD- and Dt-enriched FCPs, albeit with only two peptides with confident scores.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Xantofilas/metabolismo , Cromatografia Líquida de Alta Pressão , Pigmentos Biológicos/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
6.
Planta ; 240(4): 781-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063517

RESUMO

MAIN CONCLUSION: MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.


Assuntos
Galactolipídeos/metabolismo , Glicolipídeos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Benzoquinonas/metabolismo , Cicloexenos/metabolismo , Transporte de Elétrons , Lipídeos de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/química , Plastoquinona/metabolismo , Espectrometria de Fluorescência , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA