RESUMO
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals. Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications. These developments also triggered the need for novel and improved computer vision techniques capable of ( i ) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and ( ii ) facilitating normal operation of existing vision-based services, such as biometric authentication schemes, on the other. Especially important here, are computer vision techniques that focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions introduced by the mandates for facial masks. Such computer vision based human analysis techniques include face and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression estimation procedures, models for detecting face-hand interactions and many others, and have seen considerable attention over recent years. The goal of this survey is to provide an introduction to the problems induced by COVID-19 into such research and to present a comprehensive review of the work done in the computer vision based human analysis field. Particular attention is paid to the impact of facial masks on the performance of various methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets useful for the development and evaluation of methods for COVID-19 related applications is also provided. Finally, to help advance the field further, a discussion on the main open challenges and future research direction is given at the end of the survey. This work is intended to have a broad appeal and be useful not only for computer vision researchers but also the general public.
RESUMO
Anomalies are ubiquitous in all scientific fields and can express an unexpected event due to incomplete knowledge about the data distribution or an unknown process that suddenly comes into play and distorts the observations. Usually, due to such events' rarity, to train deep learning (DL) models on the anomaly detection (AD) task, scientists only rely on "normal" data, i.e., nonanomalous samples. Thus, letting the neural network infer the distribution beneath the input data. In such a context, we propose a novel framework, named multilayer one-class classification (MOCCA), to train and test DL models on the AD task. Specifically, we applied our approach to autoencoders. A key novelty in our work stems from the explicit optimization of the intermediate representations for the task at hand. Indeed, differently from commonly used approaches that consider a neural network as a single computational block, i.e., using the output of the last layer only, MOCCA explicitly leverages the multilayer structure of deep architectures. Each layer's feature space is optimized for AD during training, while in the test phase, the deep representations extracted from the trained layers are combined to detect anomalies. With MOCCA, we split the training process into two steps. First, the autoencoder is trained on the reconstruction task only. Then, we only retain the encoder tasked with minimizing the L2 distance between the output representation and a reference point, the anomaly-free training data centroid, at each considered layer. Subsequently, we combine the deep features extracted at the various trained layers of the encoder model to detect anomalies at inference time. To assess the performance of the models trained with MOCCA, we conduct extensive experiments on publicly available datasets, namely CIFAR10, MVTec AD, and ShanghaiTech. We show that our proposed method reaches comparable or superior performance to state-of-the-art approaches available in the literature. Finally, we provide a model analysis to give insights regarding the benefits of our training procedure.