Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 17(16): 4304-4316, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908562

RESUMO

We report, for the first time, the self-assembly of an acyl-thiourea based sensor, N-{(6-methoxy-pyridine-2-yl) carbamothioyl}benzamide (NG1), with panchromatic fluorescent fibres and its dual-sensing properties for the sequential detection of Cu2+ ions and lactic acid. The panchromatic fibres formed by NG1 were disrupted in the presence of Cu2+ ions and this was accompanied by a visible colour change in the solution from colourless to yellow. The addition of lactic acid to the NG1 + Cu2+ solution, on the other hand, induced re-aggregation to fibrillar structures and the colour of the solution again changed to colourless. Hence, it may be surmised that the disaggregation and re-aggregation impart unique dual-sensing properties to NG1 for the sequential detection of Cu2+ ions and lactic acid. The application of NG1 as a selective sensor for Cu2+ ions and lactic acid has been assessed in detail by UV-visible and fluorescence spectroscopy. Furthermore, two structural variants of NG1, namely, NG2 and NG3, were synthesized, which suggest the crucial role of pyridine in imparting panchromatic emission properties and of both pyridine and acyl-thiourea side chain in the binding of Cu2+ ions. The O-methoxy group plays an important part in making NG1 the most sensitive probe of its structural analogs. Finally, the utility of NG1 for the sequential and cellular detection of Cu2+ ions and lactic acid was studied in human RPE cells. The experimental results of the interaction of NG1 with Cu2+ ions and lactic acid have also been validated theoretically by using quantum chemical calculations based on density functional theory (DFT). To the best of our knowledge, this is the first report wherein a dual sensor for Cu2+ ions and lactate ions is synthesized. More importantly, the aggregation properties of the sensor have been studied extensively and an interesting correlation of the photophysical properties of the probe with its self-assembling behavior has been elucidated.


Assuntos
Cobre , Ácido Láctico , Corantes , Corantes Fluorescentes , Humanos , Íons , Espectrometria de Fluorescência
2.
ACS Omega ; 6(4): 3024-3036, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553920

RESUMO

A supramolecular cucurbit[6]uril (CB[6])-enriched magnetic montmorillonite (CBCM) nanocomposite was prepared and characterized. CB[6] played a prominent role as a capping agent, helping in better distribution of the nanoparticles, and as a binder between nanoparticles. Montmorillonite provided structural stability and fortified ultrafast adsorption toward dyes. Its application in the removal of cationic dyes from wastewater was systematically assessed. Process parameters such as pH, initial dye concentration, dosage, temperature, and time were optimized. Kinetics and isotherms of the process were described using pseudo-second-order kinetics and the Langmuir isotherm, respectively. CBCM exhibited rapid dye removal capacity in short reaction times with q max of 199.20, 78.31, and 55.62 mg g-1 and K2 of 0.0281, 0.0.0823, and 0.0953 L mg-1 min-1 for crystal violet, methylene blue, and rhodamine B, respectively. Benefiting from the synergetic effects of montmorillonite surface hydrophobicity, abundant carbonyl groups of CB[6], and magnetic properties of copper ferrite, CBCM demonstrated outstanding dye removal capacity, negligible leaching at saturation, and high tolerance toward harsh conditions. This intrinsic nature is expedient in prolonged industrial operations. To demonstrate industrial viability, syringe filtration and continuous flow fixed-bed column operations were validated. The CBCM fixed-bed column demonstrated stable dye removal efficiency with 10-100 mg mL-1 dye at 10-50 mL min-1 flow rates. Utilizing the magnetic and catalytic activities of the copper ferrite nanoparticles, CBCM was recycled using a magnet, regenerated, and reused for several cycles. CB[6] remarkably improved the performance of the nanocomposite and made it suitable for different effluent treatment techniques. This may pave a sustainable way toward the efficient onsite treatment of effluent at the industrial scale.

3.
ACS Chem Neurosci ; 10(3): 1230-1239, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380833

RESUMO

We report for the very first time the discovery of amyloid-like self-assemblies formed by the nonaromatic single amino acids cysteine (Cys) and methionine (Met) under neutral aqueous conditions. The structure formation was assessed and characterized by various microscopic and spectroscopic techniques such as optical microscopy, phase contrast microscopy, scanning electron microscopy, and transmission electron microscopy. The mechanism of self-assembly and the role of hydrogen bonding and thiol interactions of Cys and Met were assessed by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and solid state NMR along with various control experiments. In addition, molecular dynamics simulations were carried out to gain insight into assembly initiation. Further, Thioflavin T and Congo red binding assays with Cys and Met structures indicated that these single amino acid assemblies may have amyloid-like characteristics. To understand the biological significance of the Cys and Met structures, cytotoxicity assays of the assemblies were performed on human neuroblastoma IMR-32 cells and monkey kidney cells (COS-7). The results revealed that both Cys and Met fibers were cytotoxic. The cell viability assay further supported the hypothesis that aggregation of single amino acid may contribute to the etiology of metabolic disorders like cystinuria and hypermethioninemia. The results presented in this study are striking, and to the best of our knowledge this is the first report which demonstrates that nonaromatic amino acids like Cys and Met can undergo spontaneous self-assembly to form amyloidogenic aggregates. The results presented are also consistent with the established generic amyloid hypothesis and support a new paradigm for the study of the etiology of single amino acid initiated metabolic disorders in amyloid related diseases.


Assuntos
Amiloide/química , Cisteína/química , Metionina/química , Amiloide/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Cisteína/metabolismo , Humanos , Ligação de Hidrogênio , Metionina/metabolismo , Água/química
4.
Ann Oncol ; 29(10): 2061-2067, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412224

RESUMO

Background: Gene expression-based profiling of colorectal cancer (CRC) can be used to identify four molecularly homogeneous consensus molecular subtype (CMS) groups with unique biologic features. However, its applicability to colorectal premalignant lesions remains unknown. Patients and methods: We assembled the largest transcriptomic premalignancy dataset by integrating different public and proprietary cohorts of adenomatous and serrated polyps from sporadic (N = 311) and hereditary (N = 78) patient populations and carried out a comprehensive analysis of carcinogenesis pathways using the CMS random forest (RF) classifier. Results: Overall, transcriptomic subtyping of sporadic and hereditary polyps revealed CMS2 and CMS1 subgroups as the predominant molecular subtypes in premalignancy. Pathway enrichment analysis showed that adenomatous polyps from sporadic or hereditary cases (including Lynch syndrome) displayed a CMS2-like phenotype with WNT and MYC activation, whereas hyperplastic and serrated polyps with CMS1-like phenotype harbored prominent immune activation. Rare adenomas with CMS4-like phenotype showed significant enrichment for stromal signatures along with transforming growth factor-ß activation. There was a strong association of CMS1-like polyps with serrated pathology, right-sided anatomic location and BRAF mutations. Conclusions: Based on our observations made in premalignancy, we propose a model of pathway activation associated with CMS classification in colorectal carcinogenesis. Specifically, while adenomatous polyps are largely CMS2, most hyperplastic and serrated polyps are CMS1 and may transition into other CMS groups during evolution into carcinomas. Our findings shed light on the transcriptional landscape of premalignant colonic polyps and may help guide the development of future biomarkers or preventive treatments for CRC.


Assuntos
Adenoma/diagnóstico , Biomarcadores Tumorais/genética , Pólipos do Colo/diagnóstico , Neoplasias Colorretais/classificação , Neoplasias Colorretais/diagnóstico , Mutação , Lesões Pré-Cancerosas/diagnóstico , Adenoma/genética , Pólipos do Colo/genética , Neoplasias Colorretais/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenótipo , Lesões Pré-Cancerosas/genética , Valor Preditivo dos Testes , Prognóstico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA