Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 11(1): 8797, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888801

RESUMO

Nowadays droplet microfluidics is widely used to perform high throughput assays and for the synthesis of micro- and nanoparticles. These applications usually require packaging several reagents into droplets and their mixing to start a biochemical reaction. For rapid mixing microfluidic devices usually require additional functional elements that make their designs more complex. Here we perform a series of 2D numerical simulations, followed by experimental studies, and introduce a novel asymmetric flow-focusing droplet generator, which enhances mixing during droplet formation due to a 2D or 3D asymmetric vortex, located in the droplet formation area of the microfluidic device. Our results suggest that 2D numerical simulations can be used for qualitative analysis of two-phase flows and droplet generation process in quasi-two-dimensional devices, while the relative simplicity of such simulations allows them to be easily applied to fairly complicated microfluidic geometries. Mixing inside droplets formed in the asymmetric generator occurs up to six times faster than in a conventional symmetric one. The best mixing efficiency is achieved in a specific range of droplet volumes, which can be changed by scaling the geometry of the device. Thus, the droplet generator suggested here can significantly simplify designs of microfluidic devices because it enables both the droplet formation and fast mixing of the reagents within droplets. Moreover, it can be used to precisely estimate reaction kinetics.

2.
Sci Rep ; 10(1): 9830, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555273

RESUMO

The journey of sperm navigation towards ovum is one of the most important questions in mammalian fertilisation and reproduction. However, we know very little about spermatozoa propagation in a complex fluidic, chemical and topographic environment of a fertility tract. Using microfluidics techniques, we investigate the influence of cell-cell interactions on spermatozoa swimming behavior in constrained environment at different concentrations. Our study shows that at high enough cell concentration the interaction between boundary-following cells leads to formation of areas with preferential direction of cell swimming. In the microchannel of a rectangular cross-section, this leads to formation of a "four-lane" swimming pattern with the asymmetry of the cell distribution of up to 40%. We propose that this is caused by the combination of cell-cell collisions in the corners of the microchannel and the existence of morphologically different spermatozoa: slightly asymmetric cells with trajectories curved left and the symmetric ones, with trajectories curved right. Our findings suggest that cell-cell interactions in highly folded environment of mammalian reproductive tract are important for spermatozoa swimming behavior and play role in selection of highly motile cells.


Assuntos
Comunicação Celular , Técnicas Citológicas/instrumentação , Dispositivos Lab-On-A-Chip , Espermatozoides/citologia , Fenômenos Biomecânicos , Humanos , Masculino
3.
Artigo em Inglês | MEDLINE | ID: mdl-24580155

RESUMO

Many structural properties of conventional passive materials are known to arise from the symmetries of their microscopic constituents. By contrast, it is largely unclear how the interplay between particle shape and self-propulsion controls the meso- and macroscale behavior of active matter. Here we use large-scale simulations of homo- and heterogeneous self-propelled particle systems to identify generic effects of broken particle-shape symmetry on collective motion. We find that even small violations of fore-aft symmetry lead to fundamentally different collective behaviors, which may facilitate demixing of differently shaped species as well as the spontaneous formation of stable microrotors. These results suggest that variation of particle shape yields robust physical mechanisms to control self-assembly of active matter, with possibly profound implications for biology and materials design.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Modelos Biológicos , Simulação por Computador
4.
Proc Natl Acad Sci U S A ; 106(28): 11444-7, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19553213

RESUMO

An approach to quantitatively study vesicle dynamics as well as biologically-related micro-objects in a fluid flow, which is based on the combination of a dynamical trap and a control parameter, the ratio of the vorticity to the strain rate, is suggested. The flow is continuously varied between rotational, shearing, and elongational in a microfluidic 4-roll mill device, the dynamical trap, that allows scanning of the entire phase diagram of motions, i.e., tank-treading (TT), tumbling (TU), and trembling (TR), using a single vesicle even at lambda = eta(in)/eta(out) = 1, where eta(in) and eta(out) are the viscosities of the inner and outer fluids. This cannot be achieved in pure shear flow, where the transition between TT and either TU or TR is attained only at lambda>1. As a result, it is found that the vesicle dynamical states in a general are presented by the phase diagram in a space of only 2 dimensionless control parameters. The findings are in semiquantitative accord with the recent theory made for a quasi-spherical vesicle, although vesicles with large deviations from spherical shape were studied experimentally. The physics of TR is also uncovered.


Assuntos
Vesículas Citoplasmáticas/fisiologia , Membranas/fisiologia , Modelos Biológicos , Reologia , Viscosidade
5.
Phys Rev Lett ; 102(11): 118105, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19392243

RESUMO

We report the first experimental phase diagram of vesicle dynamical states in a shear flow presented in a space of two dimensionless parameters suggested recently by V. Lebedev et al. To reduce errors in the control parameters, 3D geometrical reconstruction and determination of the viscosity contrast of a vesicle in situ in a plane Couette flow device prior to the experiment are developed. Our results are in accord with the theory predicting three distinctly separating regions of vesicle dynamical states in the plane of just two self-similar parameters.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Modelos Biológicos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA