Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Phys Rev E ; 108(3-1): 034301, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849143

RESUMO

Many real-world time series exhibit both significant short- and long-range temporal correlations. Such correlations enhance the errors of linear trend analysis. In this paper, we provide a general framework for trend analysis under the consideration of such correlations. We propose a parsimonious model containing both a single short-range autoregressive parameter and long-range fractional parameter. We derive analytical closed-form results for the error bars of the least-squares estimate of the trend for such time series, highlighting the different effects of short- and of long-range correlations. We employ an ensemble method for the automated extraction of scaling regions to estimate the fractional parameter of the data model together with its error bar, and the Grünwald-Letnikov derivative for the identification of the autoregressive parameter. We apply this framework to the study of warming trends on gridded temperature data in central Europe. We make use of the redundancy of the trend signal in adjacent grid points using methods of spatial averaging and the first principal component of empirical orthogonal function analysis. We find good agreement between the results of these two methods. We find a statistically significant decadal warming trend in central Europe over the past 70 years, which shows a particularly dramatic increase over the past 20 years.

2.
Phys Rev E ; 106(4-2): 045102, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397500

RESUMO

We estimate the maximal Lyapunov exponent at different resolutions and Reynolds numbers in large eddy simulations (LES) and direct numerical simulations of sinusoidally driven Navier-Stokes equations in three dimensions. Independent of the Reynolds number when nondimensionalized by Kolmogorov units, the LES Lyapunov exponent diverges as an inverse power of the effective grid spacing showing that the fine scale structures exhibit much faster error growth rates than the larger ones. Effectively, i.e., ignoring the cutoff of this phenomenon at the Kolmogorov scale, this behavior introduces an upper bound to the prediction horizon that can be achieved by improving the precision of initial conditions through refining of the measurement grid.

3.
Nat Commun ; 13(1): 4593, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933555

RESUMO

The dynamics of power consumption constitutes an essential building block for planning and operating sustainable energy systems. Whereas variations in the dynamics of renewable energy generation are reasonably well studied, a deeper understanding of the variations in consumption dynamics is still missing. Here, we analyse highly resolved residential electricity consumption data of Austrian, German and UK households and propose a generally applicable data-driven load model. Specifically, we disentangle the average demand profiles from the demand fluctuations based purely on time series data. We introduce a stochastic model to quantitatively capture the highly intermittent demand fluctuations. Thereby, we offer a better understanding of demand dynamics, in particular its fluctuations, and provide general tools for disentangling mean demand and fluctuations for any given system, going beyond the standard load profile (SLP). Our insights on the demand dynamics may support planning and operating future-compliant (micro) grids in maintaining supply-demand balance.


Assuntos
Eletricidade , Energia Renovável , Áustria , Características da Família , Previsões
4.
Chaos ; 32(7): 073101, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907739

RESUMO

Line failure cascading in power networks is a complex process that involves direct and indirect interactions between lines' states. We consider the inverse problem of learning statistical models to find the sparse interaction graph from the pairwise statistics collected from line failures data in the steady states and over time. We show that the weighted l-regularized pairwise maximum entropy models successfully capture pairwise and indirect higher-order interactions undistinguished by observing the pairwise statistics. The learned models reveal asymmetric, strongly positive, and negative interactions between the network's different lines' states. We evaluate the predictive performance of models over independent trajectories of failure unfolding in the network. The static model captures the failures' interactions by maximizing the log-likelihood of observing each link state conditioned to other links' states near the steady states. We use the learned interactions to reconstruct the network's steady states using the Glauber dynamics, predicting the cascade size distribution, inferring the co-susceptible line groups, and comparing the results against the data. The dynamic interaction model is learned by maximizing the log-likelihood of the network's state in state trajectories and can successfully predict the network state for failure propagation trajectories after an initial failure.

5.
Phys Rev E ; 104(2-1): 024208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525647

RESUMO

Autocorrelations in stationary systems are time-symmetric, irrespective of the signal's properties. Linear dynamics is usually associated with signals which are statistically time inversion invariant. This is known to be broken for non-Gaussian models. In this paper, we develop a theoretical framework of time reversibility of linear models based on noncontinuous driving. We identify the inverse decay exponent of the autocorrelation function as either a characteristic time for the building-up of extreme events in the time series or of relaxations after these extreme events. If the characteristic time is known, the dynamics can be inverted in both directions in time and the residuals can be compared, which gives a criterion for the type of time inversion asymmetry. The method is applied to two time series from atmospheric science with different behavior.

6.
Phys Rev E ; 104(2-1): 024105, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525678

RESUMO

How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x)=D_{0}|x|^{γ} and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicity-breaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB∼(1/r)-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.

7.
Phys Rev E ; 103(3-1): 032110, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862776

RESUMO

During transcription, translation, or self-replication of DNA or RNA, information is transferred to the newly formed species from its predecessor. These processes can be interpreted as (generalized) biological copying mechanism as the new biological entities like DNA, RNA, or proteins are representing the information of their parent bodies uniquely. The accuracy of these copying processes is essential, since errors in the copied code can reduce the functionality of the next generation. Such errors might result from perturbations on these processes. Most important in this context is the temperature of the medium, i.e., thermal noise. Although a reasonable amount of experimental studies have been carried out on this important issue, theoretical understanding is truly sparse. In the present work, we illustrate a model study which is able to focus on the effect of the temperature on the process of biological copying mechanisms, as well as on mutation. We find for our paradigmatic models that, in a quite general scenario, the copying processes are most accurate at an intermediate temperature range; i.e., there exists an optimum temperature where mutation is most unlikely. This allows us to interpret the observations for some biological species with the aid of our model study.


Assuntos
DNA/genética , Modelos Biológicos , Temperatura , Mutação
8.
Chaos ; 31(3): 033148, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810724

RESUMO

We investigate the dynamics of particulate matter, nitrogen oxides, and ozone concentrations in Hong Kong. Using fluctuation functions as a measure for their variability, we develop several simple data models and test their predictive power. We discuss two relevant dynamical properties, namely, the scaling of fluctuations, which is associated with long memory, and the deviations from the Gaussian distribution. While the scaling of fluctuations can be shown to be an artifact of a relatively regular seasonal cycle, the process does not follow a normal distribution even when corrected for correlations and non-stationarity due to random (Poissonian) spikes. We compare predictability and other fitted model parameters between stations and pollutants.

9.
Chaos ; 30(12): 123147, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380034

RESUMO

Oceanic surface flows are dominated by finite-time mesoscale structures that separate two-dimensional flows into volumes of qualitatively different dynamical behavior. Among these, the transport boundaries around eddies are of particular interest since the enclosed volumes show a notable stability with respect to filamentation while being transported over significant distances with consequences for a multitude of different oceanic phenomena. In this paper, we present a novel method to analyze coherent transport in oceanic flows. The presented approach is purely based on convexity and aims to uncover maximal persistently star-convex (MPSC) volumes, volumes that remain star-convex with respect to a chosen reference point during a predefined time window. Since these volumes do not generate filaments, they constitute a sub-class of finite-time coherent volumes. The new perspective yields definitions for filaments, which enables the study of MPSC volume formation and dissipation. We discuss the underlying theory and present an algorithm, the material star-convex structure search, that yields comprehensible and intuitive results. In addition, we apply our method to different velocity fields and illustrate the usefulness of the method for interdisciplinary research by studying the generation of filaments in a real-world example.

10.
Entropy (Basel) ; 22(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33287008

RESUMO

We discuss the motion of substance in a channel containing nodes of a network. Each node of the channel can exchange substance with: (i) neighboring nodes of the channel, (ii) network nodes which do not belong to the channel, and (iii) environment of the network. The new point in this study is that we assume possibility for exchange of substance among flows of substance between nodes of the channel and: (i) nodes that belong to the network but do not belong to the channel and (ii) environment of the network. This leads to an extension of the model of motion of substance and the extended model contains previous models as particular cases. We use a discrete-time model of motion of substance and consider a stationary regime of motion of substance in a channel containing a finite number of nodes. As results of the study, we obtain a class of probability distributions connected to the amount of substance in nodes of the channel. We prove that the obtained class of distributions contains all truncated discrete probability distributions of discrete random variable ω which can take values 0,1,⋯,N. Theory for the case of a channel containing infinite number of nodes is presented in Appendix A. The continuous version of the discussed discrete probability distributions is described in Appendix B. The discussed extended model and obtained results can be used for the study of phenomena that can be modeled by flows in networks: motion of resources, traffic flows, motion of migrants, etc.

11.
Sci Rep ; 10(1): 19822, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188234

RESUMO

We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most impactful editions. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses.

12.
Phys Rev E ; 101(6-1): 062145, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688620

RESUMO

We consider two aspects in climatic science where bistability between the two stable states of the systems is observed. One is the transition between the glacial and the interglacial period in Earth's glacial cycle. Another is the thermohaline circulation in the North Atlantic ocean. Both of these phenomena can be modeled by the overdamped dynamics of a Brownian particle in a double-well potential subject to periodic forcing. For the former case, the two wells represent two different climates and the periodic forcing is sufficiently weak not to cause a transition between the two states without the effect of the noise. Whereas in case of the latter phenomenon, the two states correspond to the two different conditions of the flow and the strength of the periodic forcing is high enough to give rise to hysteresis in the system. We propose that one important component of the dynamics, short-term fluctuations related to weather, in both of these cases, depends on the current climatic state of the system. This leads to introduction of the state-dependent diffusion coefficients in the dynamics because the diffusion coefficient represents the strength of the fluctuations. We justify our argument by analyzing the δ^{18}O record for the glacial cycle model. We have shown that this consideration can produce certain features in the dynamics which agree with the real observations in case of both glacial cycles and thermohaline flow.

13.
Phys Rev E ; 101(3-1): 032114, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289956

RESUMO

Detrended fluctuation analysis (DFA) is one of the most widely used tools for the detection of long-range dependence in time series. Although DFA has found many interesting applications and has been shown to be one of the best performing detrending methods, its probabilistic foundations are still unclear. In this paper, we study probabilistic properties of DFA for Gaussian processes. Our main attention is paid to the distribution of the squared error sum of the detrended process. We use a probabilistic approach to derive general formulas for the expected value and the variance of the squared fluctuation function of DFA for Gaussian processes. We also get analytical results for the expected value of the squared fluctuation function for particular examples of Gaussian processes, such as Gaussian white noise, fractional Gaussian noise, ordinary Brownian motion, and fractional Brownian motion. Our analytical formulas are supported by numerical simulations. The results obtained can serve as a starting point for analyzing the statistical properties of DFA-based estimators for the fluctuation function and long-memory parameter.

14.
Chaos ; 30(1): 013130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32013502

RESUMO

Frequency measurements indicate the state of a power grid. In fact, deviations from the nominal frequency determine whether the grid is stable or in a critical situation. We aim to understand the fluctuations of the frequency on multiple time scales with a recently proposed method based on detrended fluctuation analysis. It enables us to infer characteristic time scales and generate stochastic models. We capture and quantify known features of the fluctuations like periodicity due to the trading market, response to variations by control systems, and stability of the long time average. We discuss similarities and differences between the British grid and the continental European grid.

15.
Phys Rev E ; 100(5-1): 052116, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869985

RESUMO

We examine two-level systems which undergo an instantaneous change in the energy level differences due to the application of an external protocol. In particular the behavior of the work distribution as well as the probability of second-law violations as the thermodynamic limit, and separately the quasistatic limit, is approached are investigated.

16.
Phys Rev E ; 100(3-1): 032108, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31639936

RESUMO

It is known that the reliable logical response can be extracted from a noisy bistable system at an intermediate value of noise strength when two random or periodic, two-level, square waveform serve as the inputs. The asymmetry of the potential has a very important role and dictates the type of logical operation, such as or or and, exhibited by the system. Here we show that one can construct logic gates with symmetric bistable potential if the two states of the double-well are thermalized with two different heat baths. It has been found that if a given state is kept at a sufficiently low temperature compared to the other, the system shows one kind of logic behavior (say, or). Interestingly, the system's response turns into the other kind (say, and) if the temperature of the initial low-temperature well is increased gradually and the quality of the logical response first improves and then weakens after passing through a maximum at a particular value. However, the reliability of the second kind of logical response (and) is not as good as the first kind (or) and depends on the amplitude of the inputs. Still one can construct both kinds of logic gates with maximum reliability by properly choosing the initial low-temperature well.

17.
Phys Rev E ; 99(3-1): 033305, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999507

RESUMO

We present a bottom-up derivation of fluctuation analysis with detrending for the detection of long-range correlations in the presence of additive trends or intrinsic nonstationarities. While the well-known detrended fluctuation analysis (DFA) and detrending moving average (DMA) were introduced ad hoc, we claim basic principles for such methods where DFA and DMA are then shown to be specific realizations. The mean-squared displacement of the summed time series contains the same information about long-range correlations as the autocorrelation function but has much better statistical properties for large time lags. However, the scaling exponent of its estimator on a single time series is affected not only by trends on the data but also by intrinsic nonstationarities. We therefore define the fluctuation function as mean-squared displacement with weighting kernel. We require that its estimator be unbiased and exhibit the correct scaling behavior for the random component of a signal, which is only achieved if the weighting kernel implies detrending. We show how DFA and DMA satisfy these requirements and we extract their kernel weights.

18.
Phys Rev E ; 97(5-1): 052147, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906879

RESUMO

In its classical version, the theory of large deviations makes quantitative statements about the probability of outliers when estimating time averages, if time series data are identically independently distributed. We study large-deviation probabilities (LDPs) for time averages in short- and long-range correlated Gaussian processes and show that long-range correlations lead to subexponential decay of LDPs. A particular deterministic intermittent map can, depending on a control parameter, also generate long-range correlated time series. We illustrate numerically, in agreement with the mathematical literature, that this type of intermittency leads to a power law decay of LDPs. The power law decay holds irrespective of whether the correlation time is finite or infinite, and hence irrespective of whether the central limit theorem applies or not.

19.
Chaos ; 28(5): 053101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29857670

RESUMO

Vortices of coherent fluid volume are considered to have a substantial impact on transport processes in turbulent media. Yet, due to their Lagrangian nature, detecting these structures is highly nontrivial. In this respect, transfer operator approaches have been proven to provide useful tools: Approximating a possibly time-dependent flow as a discrete Markov process in space and time, information about coherent structures is contained in the operator's eigenvectors, which is usually extracted by employing clustering methods. Here, we propose an extended approach that couples surrounding filaments using "mixing boundary conditions" and focuses on the separation of the inner coherent set and embedding outer flow. The approach refrains from using unsupervised machine learning techniques such as clustering and uses physical arguments by maximizing a coherence ratio instead. We show that this technique improves the reconstruction of separatrices in stationary open flows and succeeds in finding almost-invariant sets in periodically perturbed flows.

20.
Phys Rev E ; 96(2-1): 022217, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950553

RESUMO

Dynamical intermittency is known to generate anomalous statistical behavior of dynamical systems, a prominent example being the Pomeau-Manneville map. We present a nonlinear oscillator, i.e., a physical model in continuous time, whose properties in terms of weak ergodity breaking and aging have a one-to-one correspondence to the properties of the Pomeau-Manneville map. So for both systems in a wide range of parameters no physical invariant density exists. We show how this regime can be characterized quantitatively using the techniques of infinite invariant densities and the Thaler-Dynkin limit theorem. We see how expectation values exhibit aging in terms of scaling in time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA