Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1170, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216717

RESUMO

This groundbreaking study pioneers the exploration of the therapeutic implications of a constant magnetic field simultaneously with hybrid nanoparticles on blood flow within a tapered artery, characterized by multiple stenosis along its exterior walls and a central thrombus, employing three-dimensional bio-fluid simulations. In addition, a magnetized catheter is inserted into the thrombus to increase the therapeutic potential of this novel method. The flow condition under consideration has applications in targeted medication distribution, improved medical device design, and improved diagnostics, as well as in advancing healthcare and biomedical engineering. Our investigation primarily aims to optimize blood flow efficiency, encompassing key parameters like pressure, velocity, and heat fluctuations influenced by diverse geometric constraints within the stenotic artery. Precise solutions are obtained through the finite element method (FEM) coupled with advanced bio-fluid dynamics (BFD) software. Hybrid nanoparticles and magnetic fields impacted pressure and velocity, notably reducing pressure within the stenosis. Convective heat flux remained uniform, while temperature profiles showed consistent inlet rise and gradual decline with transient variations. This approach promotes fluid flow, and convection within stenosed arteries, enhances heat transport, evacuates heat from stenotic regions, and improves heat dispersion to surrounding tissues. These findings hold promise for targeted therapies, benefiting patients with vascular disorders, and advancing our understanding of complex bio-fluid dynamics.


Assuntos
Nanopartículas , Trombose , Humanos , Constrição Patológica , Simulação por Computador , Artérias/fisiologia , Campos Magnéticos , Modelos Cardiovasculares
2.
Sci Rep ; 13(1): 15588, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731005

RESUMO

This article scrutinizes blood circulation through an artery having magnetized hybrid nanoparticles (silver and gold) with multiple stenoses at the outer walls and erratic thrombus of different radii at the center. In the realm of biomedical innovation, magnetized hybrid nanoparticles emerge as a captivating frontier. These nanoparticles, amalgamating diverse materials, exhibit magnetic properties that engender novel prospects for targeted drug delivery, medical imaging enhancement, and therapeutic interventions. The study was carried out employing modern bio-fluid dynamics (BFD) software. In this iterative procedure, a second-order finite difference approach is used to solve the governing equations with 0.005 tolerance. The experiment is performed on a blood conduit with mild stenosis assumptions, and expressions of temperature, resistance impedance to flow, velocity, wall shear stress, and pressure gradient are generated by employing related boundary conditions. No one has ever attempted to acquire the remedial impact of an induced magnetic field and hybrid nanoparticles on the bloodstream in a tapering artery containing multiple stenoses on the outside walls and multi-thrombus at the center using 3-D bio-fluid simulation. Furthermore, the study's findings are unique, and these computational discoveries were not previously published by any researcher. The findings suggest that hybrid nanoparticles can be used as medication carriers to reduce the impact of thrombosis and stenosis-induced resistance to blood flow or coagulation-related factors.


Assuntos
Besouros , Trombose , Animais , Constrição Patológica , Temperatura Alta , Simbiose , Artérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA