Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PLoS One ; 19(8): e0306021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088432

RESUMO

Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.


Assuntos
Fibras Musculares Esqueléticas , Miosite de Corpos de Inclusão , Humanos , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Diferenciação Celular , Idoso , Feminino , Masculino , Células Cultivadas , Transcriptoma , Mioblastos/metabolismo , Mioblastos/patologia , Biópsia , Perfilação da Expressão Gênica , Pessoa de Meia-Idade
2.
Adv Healthc Mater ; 13(22): e2401181, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38734966

RESUMO

Here, a novel porous microneedle (PMN) device with bilaterally aligned electroosmotic flow (EOF) enabling controllable dual-mode delivery of molecules is developed. The PMNs placed at anode and cathode compartments are modified with anionic poly-2-acrylamido-2-methyl-1-propanesulfonic acid and cationic poly-(3-acrylamidopropyl) trimethylammonium, respectively. The direction of EOF generated by PMN at the cathode compartment is, therefore, reversed from cathode to anode, countering the unwanted cathodal suctioning of interstitial fluid caused by reverse iontophoresis. With the bilateral alignment of EOF, the versatility of the proposed device is evaluated by delivering molecules with different charges and sizes using Franz cell. In addition, a 3D printed probe device is developed to ease practical handling and minimize electrical stimulation by integrating two PMNs in closed proximity. Finally, the performance of the integrated probe device is demonstrated by dual delivery of a variety of molecules (methylene blue, rhodamine B, and fluorescein isothiocyanate-dextran) using pig skin and vaccination using mice with delivered ovalbumin.


Assuntos
Eletro-Osmose , Agulhas , Rodaminas , Animais , Suínos , Camundongos , Eletro-Osmose/instrumentação , Rodaminas/química , Porosidade , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Dextranos/química , Azul de Metileno/química , Ovalbumina/administração & dosagem , Ovalbumina/química , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Microinjeções/instrumentação , Microinjeções/métodos , Impressão Tridimensional
3.
FEBS Open Bio ; 13(12): 2200-2214, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37845194

RESUMO

Epidemiological studies have shown that abnormalities of glucose metabolism are involved in leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD). However, the physiological significance of this association is unclear. In the present study, we investigated the effect of LRRK2 on high-fat diet (HFD)-induced glucose intolerance using Lrrk2-knockout (KO) mice. We found for the first time that HFD-fed KO mice display improved glucose tolerance compared with their wild-type (WT) counterparts. In addition, high serum insulin and leptin, as well as low serum adiponectin resulting from HFD in WT mice were improved in KO mice. Using western blotting, we found that Lrrk2 is highly expressed in adipose tissues compared with other insulin-related tissues that are thought to be important in glucose tolerance, including skeletal muscle, liver, and pancreas. Lrrk2 expression and phosphorylation of its kinase substrates Rab8a and Rab10 were significantly elevated after HFD treatment in WT mice. In cell culture experiments, treatment with a LRRK2 kinase inhibitor stimulated insulin-dependent membrane translocation of glucose transporter 4 (Glut4) and glucose uptake in mouse 3T3-L1 adipocytes. We conclude that increased LRRK2 kinase activity in adipose tissue exacerbates glucose tolerance by suppressing Rab8- and Rab10-mediated GLUT4 membrane translocation.


Assuntos
Adipócitos , Tecido Adiposo , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Transporte Biológico , Glucose/metabolismo , Insulina/metabolismo , Camundongos Knockout
4.
Am J Physiol Endocrinol Metab ; 324(5): E375-E389, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856190

RESUMO

Muscle contractile activity stimulates intramuscular recruitment of immune cells including neutrophils emerging to serve as a prerequisite for exerting proper muscular performance, although the underlying mechanisms and their contributions to myokine upregulation remain ill-defined. We previously reported that pharmacological inhibition of CX3CR1, a fractalkine receptor, dampens gnawing-dependent neutrophil recruitment into masseter muscles along with compromising their masticatory activity. By using a running exercise model, we herein demonstrated that hindlimb muscles require collaborative actions of both CX3CR1- and CXCR2-mediated signals for achieving neutrophil recruitment, upregulation of myokines including interleukin (IL)-6, enhanced GLUT4 translocation, and adequate endurance capability. Mechanistically, we revealed that a combination of CX3CR1 and CXCR2 antagonists, i.e., AZD8797 and SB2205002, inhibits exercise-inducible ICAM-1 and fractalkine upregulations in the area of the endothelium and muscle-derived CXCL1 upregulation, both of which apparently contribute to the intramuscular neutrophil accumulation in working muscles. Intriguingly, we also observed that 2 h of running results in intramuscular augmentation of innate lymphoid type 2 cells (ILC2s) markers, i.e., Bcl11b mRNA levels and anti-GATA-3-antibody-positive signals, and that these effects are completely abolished by administration of the combination of CX3CR1 and CXCR2 antagonists. Taken together, our findings strongly suggest that the exercise-evoked regional interplay among working myofibers, the adjacent endothelium, and recruited immune cells including neutrophils and possibly ILC2s, mediated through these local factors, plays a key role in the organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.NEW & NOTEWORTHY This study provides compelling evidence that running-dependent intramuscular neutrophil recruitment requires both CX3CR1- and CXCR2-mediated signals that prime not only myofiber-derived myokine upregulations but also endothelium ICAM-1 and fractalkine expressions. The results revealed the importance of the exercise-evoked regional interplay among working myofibers, the adjacent endothelium, and recruited immune cells, including neutrophils and possibly ILC2s, which plays a key role in the organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.


Assuntos
Imunidade Inata , Corrida , Animais , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Interleucina-6/metabolismo , Linfócitos , Infiltração de Neutrófilos , Neutrófilos , Regulação para Cima , Receptores de Interleucina-8B/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo
5.
J Nutr Metab ; 2023: 9774157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660406

RESUMO

Type 2 diabetes mellitus (T2DM), a lifestyle-related disease, is developed due to eating habits and decreased physical activity. Diabetes also increases the risk of cancer and major neurodegenerative diseases; controlling the onset of diabetes helps prevent various illnesses. Eating seaweed, such as Undaria pinnatifida (wakame), is a part of the Asian food culture. Therefore, we analyzed the antidiabetic effect of wakame intake using the high-fat diet-induced diabetes mouse model. Furthermore, we analyzed the effect of wakame extract on the cell membrane translocation of glucose transporter-4 (GLUT4) and activation of insulin signal molecules, such as AKT and AMPK, in insulin-sensitive tissues. Differentiated C2C12 cells were incubated with wakame components. The membrane translocation of GLUT4 and phosphorylation of AKT and AMPK were investigated with immunofluorescence staining and Western blotting, respectively. Also, male C57BL/6J mice were fed the normal diet (ND), high-fat diet (HFD), ND with 1% wakame powder (ND + W), or HFD with 1% wakame powder (HFD + W). We evaluated the effect of wakame intake on high-fat diet-induced glucose intolerance using an oral glucose tolerance test. Moreover, we analyzed insulin signaling molecules, such as GLUT4, AKT, and AMPK, in muscle using Western blotting. GLUT4 membrane translocation was promoted by wakame components. Also, GLUT4 levels and AKT and AMPK phosphorylation were significantly elevated by wakame components in C2C12 cells. In addition, the area under the curve (AUC) of the HFD + W group was significantly smaller than that of the HFD group. Furthermore, the level of GLUT4 in the muscle was increased in the wakame intake group. This study revealed that various wakame components exerted antidiabetic effects on the mice on a high-fat diet by promoting glucose uptake in the skeletal muscle, enhancing GLUT4 levels, and activating AKT and AMPK.

6.
STAR Protoc ; 3(4): 101726, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36170109

RESUMO

Heterotypic endomembrane fusion between static GLUT4-containing vesicles and traveling transferrin receptor-containing endosomes triggers insulin-responsive translocation of the GLUT4 glucose transporter. Here, we provide a protocol for preparing BODIPY-based fluorescent sensor molecules allowing detection of heterotypic endomembrane fusion through dequenching via streptavidin-biotin binding and ratiometrically analyzing insulin-responsive events with live-cell imaging. Although this protocol is for evaluating specific fusion processes relating GLUT4 translocation, it is also applicable to assessing other processes so long as sensor molecules can properly label target molecules. For complete details on the use and execution of this protocol, please refer to Hatakeyama et al. (2022).


Assuntos
Endossomos , Insulina , Endossomos/metabolismo , Insulina/metabolismo , Transportador de Glucose Tipo 4/metabolismo
7.
Sci Rep ; 12(1): 14291, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995979

RESUMO

The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an "insert-chamber based in vitro exercise model" allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the "insert chamber-based in vitro exercise model" is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Trombospondinas , Animais , Estimulação Elétrica , Humanos , Interleucina-6/genética , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , RNA Mensageiro/genética , Trombospondinas/genética
8.
Sci Rep ; 12(1): 13819, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970869

RESUMO

The gut environment, including the microbiota and its metabolites and short-chain fatty acids (SCFA), is essential for health maintenance. It is considered that functional recovery treatment for masticatory dysphagia affects the composition of the gut microbiota, indicating that habitual mastication, depending on the hardness of the food, may affect the gut microbiota and environment. However, the impact of chronic powdered diet feeding on the colonic condition and motility remains unclear. Here, we evaluated various colonic features in mice fed with powdered diets for a long-term and a mouse model with masticatory behavior. We observed a decreased abundance of the SCFA-producing bacterial genera in the ceca of the powdered diet-fed mice. Based on the importance of SCFAs in gut immune homeostasis and motility, interestingly, powdered diet feeding also resulted in constipation-like symptoms due to mild colitis, which were ameliorated by the administration of a neutrophil-depleting agent and neutrophil elastase inhibitors. Lastly, the suppressed colonic motility in the powdered diet-fed mice was significantly improved by loading masticatory activity for 2 h. Thus, feeding habits with appropriate masticatory activity and stimulation may play a key role in providing a favorable gut environment based on interactions between the gut microbiota and host immune system.


Assuntos
Colite , Microbioma Gastrointestinal , Microbiota , Animais , Ácidos Graxos Voláteis/metabolismo , Mastigação , Camundongos
9.
iScience ; 25(4): 104164, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434546

RESUMO

Quantitative features of GLUT4 glucose transporter's behavior deep inside cells remain largely unknown. Our previous analyses with live-cell imaging of intracellular GLUT4 trafficking demonstrated two crucial early events responsible for triggering insulin-responsive translocation processes, namely, heterotypic fusion and liberation. To quantify the regulation, interrelationships, and dynamics of the initial events more accurately and comprehensively, we herein applied three analyses, each based on our distinct dual-color live-cell imaging approaches. With these approaches, heterotypic fusion was found to be the first trigger for insulin-responsive GLUT4 redistributions, preceding liberation, and to be critically regulated by Akt substrate of 160 kDa (AS160) and actin dynamics. In addition, demonstrating the subcellular regional dependence of GLUT4 dynamics revealed that liberated GLUT4 molecules are promptly incorporated into the trafficking itinerary of transferrin receptors. Our approaches highlight the physiological significance of endosomal "GLUT4 molecule trafficking" rather than "GLUT4 vesicle delivery" to the plasma membrane in response to insulin.

10.
Sci Rep ; 12(1): 4136, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264677

RESUMO

Accumulation of uric acid (UA) during muscular trauma is a factor involved in the development of muscle hyperalgesia. Neutrophil extracellular traps (NETs), DNA-based reticular structures to capture UA, play a central role in the pain onset of gout attacks; however, the involvement of NETs via the elevation of local UA level in muscle hyperalgesia due to injuries from muscle overuse remains unknown. The triceps surae muscles (TSMs) in the unilateral hindlimb of mice were electrically stimulated to induce excessive muscle contraction. Mechanical withdrawal thresholds, tissue UA levels, neutrophil recruitment, and protein amount of citrullinated histone 3 (citH3), a major marker of NETs, were investigated. Furthermore, whether neutrophil depletion, extracellular DNA cleavage, and administration of the urate-lowering agent febuxostat improved muscle hyperalgesia caused by NET formation was examined. CitH3 expression upon neutrophil recruitment was significantly increased in the stimulated TSMs with increased tissue UA levels, whereas febuxostat administration improved muscle hyperalgesia with decreased citH3 and tissue UA levels, as observed in neutrophil depletion and extracellular DNA digestion. The underlying mechanism of muscle hyperalgesia associated with locally recruited neutrophils forming NETs due to increased tissue UA levels potentially plays a significant role in creating a vicious circle of muscle pain.


Assuntos
Armadilhas Extracelulares , Animais , DNA/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Febuxostat , Histonas/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos , Músculos , Neutrófilos/metabolismo , Ácido Úrico/metabolismo
11.
Sci Rep ; 12(1): 1082, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058512

RESUMO

Contractile activity is a fundamental property of skeletal muscles. We describe the establishment of a "feeder-supported in vitro exercise model" using human-origin primary satellite cells, allowing highly-developed contractile myotubes to readily be generated by applying electrical pulse stimulation (EPS). The use of murine fibroblasts as the feeder cells allows biological responses to EPS in contractile human myotubes to be selectively evaluated with species-specific analyses such as RT-PCR. We successfully applied this feeder-supported co-culture system to myotubes derived from primary satellite cells obtained from sporadic inclusion body myositis (sIBM) patients who are incapable of strenuous exercise testing. Our results demonstrated that sIBM myotubes possess essentially normal muscle functions, including contractility development, de novo sarcomere formation, and contraction-dependent myokine upregulation, upon EPS treatment. However, we found that some of sIBM myotubes, but not healthy control myotubes, often exhibit abnormal cytoplasmic TDP-43 accumulation upon EPS-evoked contraction, suggesting potential pathogenic involvement of the contraction-inducible TDP-43 distribution peculiar to sIBM. Thus, our "feeder-supported in vitro exercise model" enables us to obtain contractile human-origin myotubes, potentially utilizable for evaluating exercise-dependent intrinsic and pathogenic properties of patient muscle cells. Our approach, using feeder layers, further expands the usefulness of the "in vitro exercise model".


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Estimulação Elétrica/métodos , Células Alimentadoras/metabolismo , Humanos , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Miosite de Corpos de Inclusão/fisiopatologia , Sarcômeros/fisiologia , Células Satélites de Músculo Esquelético/metabolismo
12.
Redox Biol ; 43: 101966, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857757

RESUMO

Skeletal muscle health is important for the prevention of various age-related diseases. The loss of skeletal muscle mass, which is known as sarcopenia, underlies physical disability, poor quality of life and chronic diseases in elderly people. The transcription factor NRF2 plays important roles in the regulation of the cellular defense against oxidative stress, as well as the metabolism and mitochondrial activity. To determine the contribution of skeletal muscle NRF2 to exercise capacity, we conducted skeletal muscle-specific inhibition of KEAP1, which is a negative regulator of NRF2, and examined the cell-autonomous and non-cell-autonomous effects of NRF2 pathway activation in skeletal muscles. We found that NRF2 activation in skeletal muscles increased slow oxidative muscle fiber type and improved exercise endurance capacity in female mice. We also observed that female mice with NRF2 pathway activation in their skeletal muscles exhibited enhanced exercise-induced mobilization and ß-oxidation of fatty acids. These results indicate that NRF2 activation in skeletal muscles promotes communication with adipose tissues via humoral and/or neuronal signaling and facilitates the utilization of fatty acids as an energy source, resulting in increased mitochondrial activity and efficient energy production during exercise, which leads to improved exercise endurance.


Assuntos
Ácidos Graxos , Condicionamento Físico Animal , Animais , Tolerância ao Exercício , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Qualidade de Vida
13.
J Anat ; 238(3): 515-526, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078407

RESUMO

Myofascia, deep fascia enveloping skeletal muscles, consists of abundant collagen and elastin fibres that play a key role in the transmission of muscular forces. However, understanding of biomechanical dynamics in myofascia remains very limited due to less quantitative and relevant approaches for in vivo examination. The purpose of this study was to evaluate the myofascial fibril structure by means of a quantitative approach using two-photon microscopy (TPM) imaging in combination with intravital staining of Evans blue dye (EBD), a far-red fluorescence dye, which potentially labels elastin. With focus on myofascia of the tibial anterior (TA) muscle, the fibril structure intravitally stained with EBD was observed at the depth level of collagen fibrous membrane above the muscle belly. The EBD-labelled fibril structure and orientation in myofascia indicated biomechanical responses to muscle activity and ageing. The orientation histograms of EBD-labelled fibrils were significantly modified depending upon the intensity of muscle activity and ageing. Moreover, the density of EBD-labelled fibrils in myofascia decreased with habitual exercise but increased with muscle immobilization or ageing. In particular, the diameter of EBD-labelled fibrils in aged mice was significantly higher. The orientation histograms of EBD-labelled fibrils after habitual exercise, muscle immobilization and ageing showed significant differences compared to control. Indeed, the histograms in bilateral TA myofascia of exercise mice made simple waveforms without multiple sharp peaks, whilst muscular immobilization or ageing significantly shifted a histogram with sustaining multiple sharp peaks. Therefore, the dynamics of fibre network with EBD fluorescence in response to the biomechanical environment possibly indicate functional tissue adaptation in myofascia. Furthermore, on the basis of the knowledge that neutrophil recruitment occurs locally in working muscles, we suggested the unique reconstruction mechanism involving neutrophilic elastase in the myofascial fibril structure. In addition to the elastolytic susceptibility of EBD-labelled fibrils, distinct immunoreactivities and activities of neutrophil elastase in the myofascia were observed after electric pulse stimulation-induced muscle contraction for 15 min. Our findings of EBD-labelled fibril dynamics in myofascia through quantitative approach using TPM imaging and intravital fluorescence labelling potentially brings new insights to examine muscle physiology and pathology.


Assuntos
Fáscia/fisiologia , Neutrófilos/fisiologia , Condicionamento Físico Animal/fisiologia , Envelhecimento/fisiologia , Animais , Azul Evans , Fáscia/diagnóstico por imagem , Fáscia/ultraestrutura , Elastase de Leucócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Contração Muscular
14.
PLoS One ; 15(12): e0231064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264289

RESUMO

Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.


Assuntos
Ácidos Indolacéticos/uso terapêutico , Mitocôndrias Musculares/metabolismo , Miosite de Corpos de Inclusão/tratamento farmacológico , Fenilbutiratos/uso terapêutico , Trifosfato de Adenosina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Butionina Sulfoximina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA Mitocondrial/genética , Avaliação Pré-Clínica de Medicamentos , Dinaminas/biossíntese , Dinaminas/genética , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Fibroblastos/efeitos dos fármacos , GTP Fosfo-Hidrolases/biossíntese , GTP Fosfo-Hidrolases/genética , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Ácidos Indolacéticos/farmacologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Consumo de Oxigênio , Fenilbutiratos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos
15.
Biol Pharm Bull ; 43(11): 1660-1668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132310

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson's disease. LRRK2 is a large protein with multiple functional domains, including a guanosine 5'-triphosphate (GTP)-binding domain and a protein kinase domain. Recent studies indicated that the members of the Rab GTPase family, Rab8a and Rab10, which are involved in the membrane transport of the glucose transporter type 4 (GLUT4) during insulin-dependent glucose uptake, are phosphorylated by LRRK2. However, the physiological role of LRRK2 in the regulation of glucose metabolism is largely unknown. In the present study, we investigated the role of LRRK2 using dexamethasone (DEX)-induced glucose intolerance in mice. LRRK2 knockout (KO) mice exhibited suppressed glucose intolerance, even after treatment with DEX. The phosphorylation of LRRK2, Rab8a and Rab10 was increased in the adipose tissues of DEX-treated wild-type mice. In addition, inhibition of the LRRK2 kinase activity prevented the DEX-induced inhibition of GLUT4 membrane translocation and glucose uptake in cultured 3T3-L1 adipocytes. These results suggest that LRRK2 plays an important role in glucose metabolism in adipose tissues.


Assuntos
Tecido Adiposo/metabolismo , Dexametasona/efeitos adversos , Intolerância à Glucose/patologia , Transportador de Glucose Tipo 4/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Intolerância à Glucose/induzido quimicamente , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos
16.
Sci Rep ; 10(1): 9687, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546738

RESUMO

Despite successful clinical application of non-equilibrium atmospheric pressure plasma (APP), the details of the molecular mechanisms underlying APP-inducible biological responses remain ill-defined. We previously reported that exposure of 3T3L1 cells to APP-irradiated buffer raised the cytoplasmic free Ca2+ ([Ca2+]i) concentration by eliciting Ca2+ influx in a manner sensitive to transient receptor potential (TRP) channel inhibitors. However, the precise identity of the APP-responsive channel molecule(s) remains unclear. In the present study, we aimed to clarify channel molecule(s) responsible for indirect APP-responsive [Ca2+]i rises. siRNA-mediated silencing experiments revealed that TRPA1 and TRPV1 serve as the major APP-responsive Ca2+ channels in 3T3L1 cells. Conversely, ectopic expression of either TRPA1 or TRPV1 in APP-unresponsive C2C12 cells actually triggered [Ca2+]i elevation in response to indirect APP exposure. Desensitization experiments using 3T3L1 cells revealed APP responsiveness to be markedly suppressed after pretreatment with allyl isothiocyanate or capsaicin, TRPA1 and TRPV1 agonists, respectively. APP exposure also desensitized the cells to these chemical agonists, indicating the existence of a bi-directional heterologous desensitization property of APP-responsive [Ca2+]i transients mediated through these TRP channels. Mutational analyses of key cysteine residues in TRPA1 (Cys421, Cys621, Cys641, and Cys665) and in TRPV1 (Cys258, Cys363, and Cys742) have suggested that multiple reactive oxygen and nitrogen species are intricately involved in activation of the channels via a broad range of modifications involving these cysteine residues. Taken together, these observations allow us to conclude that both TRPA1 and TRPV1 channels play a pivotal role in evoking indirect APP-dependent [Ca2+]i responses.


Assuntos
Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Células 3T3-L1 , Animais , Pressão Atmosférica , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mioblastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
17.
J Gerontol A Biol Sci Med Sci ; 75(2): 207-217, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-30272137

RESUMO

We evaluated effects of calorie restriction (CR: consuming 60-65% of ad libitum [AL] intake) initiated late-in-life with or without acute exercise on insulin-stimulated glucose uptake (ISGU) of skeletal muscle by studying four groups of 26-month-old rats: sedentary-AL, sedentary-CR (8-week duration), 3 hours post-exercise (3hPEX)-AL and 3hPEX-CR. ISGU was determined in isolated epitrochlearis muscles incubated ± insulin. Muscles were assessed for signaling proteins (immunoblotting) and lipids (mass spectrometry). ISGU from sedentary-CR and 3hPEX-AL exceeded sedentary-AL; 3hPEX-CR exceeded all other groups. Akt (Ser473, Thr308) and Akt substrate of 160 kDa (AS160; Ser588, Thr642, Ser704) phosphorylation levels tracked with ISGU. Among the 477 lipids detected, 114 were altered by CR (including reductions in 15 of 25 acylcarnitines), and 27 were altered by exercise (including reductions in 18 of 22 lysophosphatidylcholines) with only six lipids overlapping between CR and exercise. ISGU significantly correlated with 23 lipids, including: acylcarnitine 20:1 (r = .683), lysophosphatidylethanolamine19:0 (r = -.662), acylcarnitine 24:0 (r = .611), and plasmenyl-phosphatidylethanolamine 37:5 (r = -.603). Muscle levels of ceramides (a lipid class previously linked to insulin resistance) were not altered by CR and/or exercise nor significantly correlated with ISGU, implicating other mechanisms (which potentially involve other lipids identified in this study) for greater ISGU and Akt and AS160 phosphorylation with these interventions.


Assuntos
Restrição Calórica , Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Fatores Etários , Animais , Immunoblotting , Resistência à Insulina , Masculino , Fosforilação , Ratos , Ratos Endogâmicos F344 , Comportamento Sedentário , Transdução de Sinais
18.
J Physiol ; 598(1): 101-122, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721209

RESUMO

KEY POINTS: Fractalkine receptor antagonist inhibited neutrophil recruitment to masseter muscles and exacerbated fatigability during masticatory activity. Fractalkine-mediated neutrophil recruitment is required for both upregulation of myokines (CXCL1, interleukin-6) and enhanced GLUT4 translocation in response to masticatory activity. Fractalkine and intercellular adhesion molecule-1 expression in endothelial cells increased in response to masticatory activity. In vitro experiments demonstrated that contracting myotubes lack the ability to upregulate fractalkine but revealed that endothelial fractalkine upregulation is induced using a conditioned medium of contracting myotubes. ABSTRACT: Physical exercise stimulates neutrophil recruitment within working skeletal muscle, although its underlying mechanisms remain ill-defined. By employing a masticatory behaviour (gnawing) model, we demonstrate the importance of intramuscular paracrine and autocrine systems that are triggered by muscle contractile activity and reliant upon fractalkine/CX3CL1-mediated signals. These signals were revealed to be required for achieving proper GLUT4 translocation and glucose uptake to meet the glucose demands for fatigue alleviation. Specifically, fractalkine expression and neutrophil recruitment both increased in the masseter muscle tissues upon masticatory activity. Importantly, a fractalkine antagonist inhibited neutrophil accumulation and exacerbated fatigability during masticatory activity. We found that fractalkine-dependent neutrophil recruitment is required for both upregulation of myokines (i.e. CXCL1 and interleukin-6) and enhanced GLUT4 translocation in response to gnawing activity. Immunofluorescence analysis of masseter muscles demonstrated that fractalkine and intercellular adhesion molecule-1 expression are both upregulated in endothelial cells but not in myofibres. The in vitro exercise model further revealed that contractile activity failed to stimulate fractalkine upregulation in myotubes, implying that fractalkine is not a myokine (myofibre-derived factor). Nevertheless, endothelial fractalkine expression was markedly stimulated by a conditioned medium from the contracting myotubes. Moreover, intercellular adhesion molecule-1, a key adhesion molecule for neutrophils, was upregulated in endothelial cells by fractalkine. Taken together, our findings strongly suggest that endothelial fractalkine serves as a key factor for organizing a physiologically beneficial intramuscular microenvironment by recruiting neutrophils in response to relatively mild exercise (i.e. masticatory muscle activity).


Assuntos
Células Endoteliais/citologia , Transportador de Glucose Tipo 4/metabolismo , Músculo Esquelético/fisiologia , Neutrófilos/citologia , Condicionamento Físico Animal , Animais , Células Cultivadas , Camundongos , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia
19.
Sci Rep ; 9(1): 11914, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417107

RESUMO

Contraction of cultured myotubes with application of electric pulse stimulation (EPS) has been utilized for investigating cellular responses associated with actual contractile activity. However, cultured myotubes derived from human subjects often exhibit relatively poor EPS-evoked contractile activity, resulting in minimal contraction-inducible responses (i.e. myokine secretion). We herein describe an "in vitro exercise model", using hybrid myotubes comprised of human myoblasts and murine C2C12 myoblasts, exhibiting vigorous contractile activity in response to EPS. Species-specific analyses including RT-PCR and the BioPlex assay allowed us to separately evaluate contraction-inducible gene expressions and myokine secretions from human and mouse constituents of hybrid myotubes. The hybrid myotubes, half of which had arisen from primary human satellite cells obtained from biopsy samples, exhibited remarkable increases in the secretions of human cytokines (myokines) including interleukins (IL-6, IL-8, IL-10, and IL16), CXC chemokines (CXCL1, CXCL2, CXCL5, CXCL6, CXCL10), CC chemokines (CCL1, CCL2, CCL7, CCL8, CCL11, CCL13, CCL16, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL27), and IFN-γ in response to EPS-evoked contractile activity. Together, these results indicate that inadequacies arising from human muscle cells are effectively overcome by fusing them with murine C2C12 cells, thereby supporting the development of contractility and the resulting cellular responses of human-origin muscle cells. Our approach, using hybrid myotubes, further expands the usefulness of the "in vitro exercise model".


Assuntos
Células Híbridas/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/fisiologia , Animais , Fusão Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Estimulação Elétrica , Exercício Físico , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Satélites de Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA