Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124194, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569387

RESUMO

Here, we demonstrated the synthesis of a zinc based luminescent MOF, 1 (NDC = 2,6- naphthalenedicarboxylate) for the ratiometric detection of biomarker riboflavin (RBF; vitamin B2) in water dispersed medium. Further, this MOF detected two other antibiotic drug molecules, nitrofurantoin (NFT) and nitrofurazone (NZF). The detection of these analytes is very quick (∼seconds), and the limit of detection (LOD) for RBF, NZF and NFT are calculated as 16.58 ppm, 47.63 ppb and 56.96 ppb, respectively. The detection of these analytes was also comprehended by solid, solution, cost-effective paper strip method i.e., triphasic identification capabilities. The sensor is reusable without losing its detection efficacy. The sensor further showed the recognition abilities of these antibiotics in real field samples (river water, urine and tablet) and RBF in vitamin B2 pills and food samples (milk and cold drinks). The sensing merit of 1 urged us to fabricate of 1@cotton fabric composite, which exhibited the colorimetric detection of these analytes. In-depth experimental analysis suggested that the occurrence of photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and the inner filter effect (IFE) are the possible sensing mechanisms for the recognition of the antibiotics drug. The FRET mechanism is responsible for the recognition of RBF. The sensing mechanism is further supported by the theoretical analysis and the excited lifetime measurement.


Assuntos
Antibacterianos , Transferência Ressonante de Energia de Fluorescência , Antibacterianos/análise , Nitrofurantoína , Corantes/análise , Água , Vitaminas/análise
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123882, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38241930

RESUMO

A hydrogen bonded ability metal organic framework (MOF, 1Zn) is used for the ultra-sensitive "turn-on" detection of hyperprolinemia biomarker with ultrafast (within 5 s) colorimetric response making the first MOF based hyperprolinemia biomarker sensor. The detection limit (4.46 ppb) is outperformed compared to all contemporary hyperprolinemia biomarker based sensors. Further, the sensor showed the recognition of biomarker in biological sample (human saliva). The detection of biomarker is also realized through colorimetric response (solution based and paper strip method). The mechanism of sensing is established through the electron transfer and the absorption caused emission (ACE). Moreover, the theoretical study is performed to support the sensing mechanism. The control titration of 1Zn suggest that the free -NH2 group of linker in 1Zn is involved in supramolecular interaction (hydrogen bonding) with the carboxylic group present on biomarker results the facile occurrence of electron transfer and ACE. Consequently, the luminescence "turn-on" effect of 1Zn for hyperprolinemia biomarker is observed.


Assuntos
Estruturas Metalorgânicas , Humanos , Biomarcadores , Luminescência , Zinco
3.
Inorg Chem ; 63(5): 2352-2362, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38267375

RESUMO

The exploration of smart sensors is of great significance for the selectivity, sensitivity, and ability to show the low detection limit for the target analyte. Here, we have used the linker H2L (5-((anthracen-9-ylmethyl)amino)isophthalic acid) for the construction of {[Cd(L)(DMF)(H2O)2]·H2O}n (1) which is in order with the chromophore anthracene moiety and the free -NH functionality as a guest interaction site. This framework showed the luminescence recovery "turn-on" detection of the Al3+ ion in an aqueous solution. An exhaustive mechanism study disclosed that the Lewis acid-base-type interaction between the Al3+ ion and the -NH functionality of the linker in the framework revealed that the absorbance caused an enhancement for the "turn-on" sensing event. Besides the "turn-on" sensing event, the "turn-off" sensing phenomenon of 1 is also noticed when it detects the hazardous oxo-anions (MnO4- and CrO42-) with limit of detection values of 17.08 and 19.91 ppb, respectively. The detection of these diverse analytes are very fast (10 s) and they can also be recognized through a colorimetric response. The sensing mechanisms for these analytes are established by photoinduced electron transfer, Forster resonance energy transfer, and inert filter effect along with theoretical investigation. Furthermore, to show the sensing application of 1 in a versatile podium, a MOF gel composite, 1@AA (AA = Agar-Agar), was developed from 1 with AA. Interestingly, 1@AA showed the colorimetric detection of these analytes under UV light. Therefore, sensor 1 behaves as a smart sensory material for the recognition of the above analytes through a simultaneous "turn-on" and "turn-off" effect.

4.
Dalton Trans ; 52(22): 7383-7404, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183603

RESUMO

Metal-organic frameworks (MOFs ) are excellent candidates for use in chemistry, material sciences and engineering thanks to their interesting qualitative features and potential applications. Quite interestingly, the luminescence of MOFs can be engineered by regulation of the ligand design, metal ion selection and encapsulation of guest molecules within the MOF cavity. Temperature is a very crucial physical parameter and the market share of temperature sensors is rapidly expanding with technology and medicinal advancement. Among the wide variety of available temperature sensors, recently MOFs have emerged as potential temperature sensors with the capacity to precisely measure the temperature. Lanthanide-based thermometry has advantages because of its ratiometric response ability, high quantum yield and photostability, and therefore lanthanide-based MOFs were initially focused on to construct MOF thermometers. As science and technology have gradually changed, it has been observed that with the inclusion of dye, quantum dots, etc. within the MOF cavity, it is possible to develop MOF-based thermometry. This review consolidates the recent advances of MOF-based ratiometric thermometers and their mechanism of energy transfer for determining the temperature (thermal sensitivity and temperature uncertainty). In addition, some fundamental points are also discussed, such as concepts for guiding the design of MOF ratiometric thermometers, thermometric performance and tuning the properties of MOF thermometers.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122579, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898324

RESUMO

Herein, we describe the synthesis of a new fluorescent d10 coordination polymer, [Zn2(CFDA)2(BPEP)]n·nDMF (CP-1) under solvothermal reaction condition using zinc metal ion. In CP-1, Zn(II) ion along with CFDA and BPED ligand forms a 2-fold self-interpenetrated 3D coordination polymers. This CP-1 is characterized by the single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), infrared spectra, optical microscope image and thermogravimetric analysis and the framework is found to maintain its structural stability in different solvents. The framework (CP-1) detected antibiotics (NFT (nitrofurantoin) and NZF (nitrofurazone)) and organo-toxin trinitrophenol in aqueous dispersed medium. Apart from the fast responsive (10 s), the detection limit for them was found at ppb level. The detection of these organo-aromatics were also comprehended by the colorimetric response through solid, solution and low cost paper strip technique i.e., triple mode recognition capability. The probe is re-usable without changing in its sensing efficiency and in addition, it has been applied for the detection of these analytes in the real field specimens (soil, river water, human urine and commercial tablet). The sensing ability is established by in-depth experimental analysis and the life time measurement where mechanism such as photo induced electron transfer (PET), fluorescence resonance energy transfer (FRET), inner filter effect (IFE) was recognized. The presence of guest interaction sites on the linker backbone in CP-1 induces diverse supramolecular interaction with the targeted analytes results to bring them in proximity for the occurrence of these sensing mechanism. The Stern-Volmer quenching constant values of CP-1 for the targeted analytes are admirable and the low detection limit (LOD) values for NFT, NZF and TNP are found to be 34.54, 67.79 and 43.93 ppb respectively. Further, the DFT theory is carried out in details to justify the sensing mechanism.

6.
ACS Appl Mater Interfaces ; 14(43): 48658-48674, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274222

RESUMO

Frequent use of antibiotics and the growth of industry lead to the pollution of several natural resources which is one of the major consequences for fatality to human health. Exploration of smart sensing materials is highly anticipated for ultrasensitive detection of those hazardous organics. The robust porous hydrogen bonded network encompassing a free-NH2 moiety, Zn(II)-based metal-organic framework (MOF) (1), is used for the selective detection of antibiotics and toxic oxo-anions at the ppb level. The framework is able to detect the electronically dissimilar antibiotic sulfadiazine and nitrofurazone via fluorescence "turn-on" and "turn-off" processes, respectively. The antibiotic-triggered reversible fluoro-switching phenomena (fluorescence "on-off-on") are also observed by using the fluorimetric method. An extensive theoretical investigation was performed to establish the fluoro-switching response of 1, triggered by a class of antibiotics and also the sensing of oxo-anions. This investigation reveals that the interchange of the HOMO-LUMO energy levels of fluorophore and analytes is responsible for such a fluoro-switchable sensing activity. Sensor 1 showed the versatile detection ability which is reflected by the detection of a carcinogenic nitro-group-containing drug "roxarsone". In view of the sustainable environment along with quick-responsive merit of 1, an in situ MOF gel composite (1@CS; CS = corn starch) is prepared using 1 and CS due to its useful potential features such as biocompatibility, toxicologically innocuous, good flexibility, and low commercial price. The MOF composite exhibited visual detection of the above analytes as well as antibiotic-triggered reversible fluoro-switchable colorimetric "on-off-on" response. Therefore, 1@CS represents a promising smart sensing material for monitoring of the antibiotics and oxo-anions, particularly appropriate for the real-field analysis of carcinogenic drug molecule "roxarsone" in food specimens.


Assuntos
Estruturas Metalorgânicas , Roxarsona , Materiais Inteligentes , Humanos , Amido , Antibacterianos , Zea mays , Ânions , Carcinogênese , Carcinógenos
7.
Dalton Trans ; 51(19): 7436-7454, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35411894

RESUMO

The highly luminescent complex [CdQ2(H2O)2] (1) shows ultra-selectivity and high sensitivity to the explosive organo-toxin trinitrophenol (TNP). This detection is extremely fast with a high quenching constant (5.3 × 104 M-1) and a very low limit of detection (LOD) of 137 nM/59 ppb. This motivated us to detect the lethal carcinogenic arsenical drug roxarsone (ROX), which is reported here for the first time. The quenching constant and LOD for ROX using 1 were found to be 4.9 × 104 M-1 and 86 nM (or 37 ppb), respectively. Moreover, the probe also recognizes three lethal toxic oxo-anions (MnO4-, Cr2O72- and CrO42-) with outstanding quenching constant (2.2 × 104 M-1, 1.4 × 104 M-1 and 1.1 × 104 M-1) and very low LODs (141 nM/61 ppb, 178 nM/78 ppb and 219 nM/95 ppb). Compared to the previously reported homogeneous sensing nature of the discrete complexes, our complex showed the detection of toxic pollutants in a heterogeneous manner, which results in high recyclability and hence multi-cycle sensing capability. Interestingly, 1 shows the possibility for real-time monitoring through naked eye detection by visible colorimetric changes in solid, solution and strip paper methods, i.e., triphasic detection ability. In addition, the sensor also exhibited the cross-sensing ability for these pollutants. The experimental sensing mechanism is strongly supported by the exhaustive theoretical investigation. Based on the fluorescence signal shown by each analyte, an integrated AND-OR logic gate is constructed. Furthermore, the sensing ability of 1 remains intact towards the detection of versatile real field samples including lethal carcinogenic arsenical drug roxarsone in the real food sample.


Assuntos
Poluentes Ambientais , Roxarsona , Ânions , Cádmio , Colorimetria , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA