Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.240
Filtrar
1.
Materials (Basel) ; 17(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399134

RESUMO

The assembly of Ga alloys with Ni or Ni alloy has been widely developed for various low-temperature applications in recent years. In the constituent Ni-Ga binary system, however, the phase equilibrium with the phase "NiGa5" and its stability has scarcely been investigated. The present study used the diffusion couple technique combined with SEM-EPMA and XRD analysis to examine the phase stability and the homogeneity range of the phase. The results show that "NiGa5" is a stable phase in the binary system with little homogeneity range and suggest that the peritectic reaction L+Ni3Ga7→NiGa5 lies between 112.0 and 115.5 °C. This work provides new information for the modification of the Ga-rich low-T region of the Ni-Ga phase diagram.

3.
Sci Rep ; 13(1): 23030, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155208

RESUMO

High-density electronics are hindered by the constraints of Sn-based solder joints, necessitating the exploration of Cu-Cu solid-state bonding. However, current bonding methods are expensive and time-consuming; therefore, understanding the Cu-Cu bonding mechanism is crucial for optimization. This study utilizes molecular dynamics (MD) simulation to elucidate the Cu-Cu solid-state bonding behavior, focusing on interfacial densification and diffusion phenomena. Furthermore, it highlights the influence of crystal orientation on the interfacial bonding behavior. To analyze the impact of crystal orientation, monocrystalline Cu slabs with a simplified periodic surface structure were employed to replicate surface roughness and subsequently bonded at a specific temperature. The results indicate the critical influence of crystalline orientations on the bonding process: identical orientations result in slower densification at the interface, whereas misoriented orientations significantly accelerate it. This effect, attributed to the grain boundary (GB) structures formed owing to misorientation, suggests a central role for GB diffusion in bonding progression. Diffusion coefficients calculated using the mean square displacement (MSD) confirmed these findings and exhibited significantly larger values for misoriented joints. Additionally, the simulations reveal an activation energy for GB diffusion that is lower than conventional values, highlighting the impact of the crystallographic orientation and voids at the bonding interface. Our research elucidates the role of crystalline orientation in diffusion phenomena at bonding interfaces, offering valuable implications for optimizing bonding-based manufacturing processes.

5.
Materials (Basel) ; 16(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37763541

RESUMO

Indium is considered a candidate low-temperature solder because of its low melting temperature and excellent mechanical properties. However, the solid-state microstructure evolution of In with different substrates has rarely been studied due to the softness of In. To overcome this difficulty, cryogenic broad Ar+ beam ion polishing was used to produce an artifact-free Cu/In interface for observation. In this study, we accomplished phase identification and microstructure investigation at the Cu/In interface after long-term thermal aging. CuIn2 was observed to grow at the Cu/In interface and proved to be a stable phase in the Cu-In binary system. The peritectoid temperature of the Cu11In9 + In → CuIn2 reaction was confirmed to be between 100 and 120 °C. In addition, the growth rate of CuIn2 was discovered to be dominated by the curvature of the reactant Cu11In9/In phase and the temperature difference with the peritectoid temperature. Finally, a comprehensive microstructural evolution mechanism of the Cu/In solid-state interfacial reaction was proposed.

6.
Brain ; 146(9): 3662-3675, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327379

RESUMO

Cognitive impairment is the most frequent non-motor symptom in Parkinson's disease and is associated with deficits in a number of cognitive functions including working memory. However, the pathophysiology of Parkinson's disease cognitive impairment is poorly understood. Beta oscillations have previously been shown to play an important role in cognitive functions including working memory encoding. Decreased dopamine in motor cortico-striato-thalamo-cortical (CSTC) circuits increases the spectral power of beta oscillations and results in Parkinson's disease motor symptoms. Analogous changes in parallel cognitive CSTC circuits involving the caudate and dorsolateral prefrontal cortex (DLPFC) may contribute to Parkinson's disease cognitive impairment. The objective of our study is to evaluate whether changes in beta oscillations in the caudate and DLPFC contribute to cognitive impairment in Parkinson's disease patients. To investigate this, we used local field potential recordings during deep brain stimulation surgery in 15 patients with Parkinson's disease. Local field potentials were recorded from DLPFC and caudate at rest and during a working memory task. We examined changes in beta oscillatory power during the working memory task as well as the relationship of beta oscillatory activity to preoperative cognitive status, as determined from neuropsychological testing results. We additionally conducted exploratory analyses on the relationship between cognitive impairment and task-based changes in spectral power in additional frequency bands. Spectral power of beta oscillations decreased in both DLPFC and caudate during working memory encoding and increased in these structures during feedback. Subjects with cognitive impairment had smaller decreases in caudate and DLPFC beta oscillatory power during encoding. In our exploratory analysis, we found that similar differences occurred in alpha frequencies in caudate and theta and alpha in DLPFC. Our findings suggest that oscillatory power changes in cognitive CSTC circuits may contribute to cognitive symptoms in patients with Parkinson's disease. These findings may inform the future development of novel neuromodulatory treatments for cognitive impairment in Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Cognição , Memória de Curto Prazo , Dopamina
7.
Materials (Basel) ; 16(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176172

RESUMO

Eutectic In-48Sn was considered a promising candidate for low-temperature solder due to its low melting point and excellent mechanical properties. Both Cu2(In,Sn) and Cu(In,Sn)2 formation were observed at the In-48Sn/Cu interface after 160 °C soldering. However, traditional mechanical polishing produces many defects at the In-48Sn/Cu interface, which may affect the accuracy of interfacial reaction investigations. In this study, cryogenic broad Ar+ beam ion milling was used to investigate the interfacial reaction between In-48Sn and Cu during soldering. The phase Cu6(Sn,In)5 was confirmed as the only intermetallic compound formed during 150 °C soldering, while Cu(In,Sn)2 formation was proven to be caused by room-temperature aging after soldering. Both the Cu6(Sn,In)5 and Cu(In,Sn)2 phases were confirmed by EPMA quantitative analysis and TEM selected area electron diffraction. The microstructure evolution and growth mechanism of Cu6(Sn,In)5 during soldering were proposed. In addition, the Young's modulus and hardness of Cu6(Sn,In)5 were determined to be 119.04 ± 3.94 GPa and 6.28 ± 0.13 GPa, respectively, suggesting that the doping of In in Cu6(Sn,In)5 has almost no effect on Young's modulus and hardness.

8.
Nucleic Acids Res ; 51(10): 5210-5227, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070191

RESUMO

How multi-segmented double-stranded RNA (dsRNA) viruses correctly incorporate their genomes into their capsids remains unclear for many viruses, including Bluetongue virus (BTV), a Reoviridae member, with a genome of 10 segments. To address this, we used an RNA-cross-linking and peptide-fingerprinting assay (RCAP) to identify RNA binding sites of the inner capsid protein VP3, the viral polymerase VP1 and the capping enzyme VP4. Using a combination of mutagenesis, reverse genetics, recombinant proteins and in vitro assembly, we validated the importance of these regions in virus infectivity. Further, to identify which RNA segments and sequences interact with these proteins, we used viral photo-activatable ribonucleoside crosslinking (vPAR-CL) which revealed that the larger RNA segments (S1-S4) and the smallest segment (S10) have more interactions with viral proteins than the other smaller segments. Additionally, using a sequence enrichment analysis we identified an RNA motif of nine bases that is shared by the larger segments. The importance of this motif for virus replication was confirmed by mutagenesis followed by virus recovery. We further demonstrated that these approaches could be applied to a related Reoviridae member, rotavirus (RV), which has human epidemic impact, offering the possibility of novel intervention strategies for a human pathogen.


Assuntos
Vírus Bluetongue , Capsídeo , RNA Viral , Proteínas Virais , Animais , Humanos , Vírus Bluetongue/química , Vírus Bluetongue/metabolismo , Capsídeo/química , Capsídeo/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Replicação Viral , Proteínas Virais/química , Proteínas Virais/metabolismo
9.
Nat Commun ; 14(1): 733, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759612

RESUMO

Superconductivity in the cuprates is found to be intertwined with charge and spin density waves. Determining the interactions between the different types of order is crucial for understanding these important materials. Here, we elucidate the role of the charge density wave (CDW) in the prototypical cuprate La1.885Sr0.115CuO4, by studying the effects of large magnetic fields (H) up to 24 Tesla. At low temperatures (T), the observed CDW peaks reveal two distinct regions in the material: a majority phase with short-range CDW coexisting with superconductivity, and a minority phase with longer-range CDW coexisting with static spin density wave (SDW). With increasing magnetic field, the CDW first grows smoothly in a manner similar to the SDW. However, at high fields we discover a sudden increase in the CDW amplitude upon entering the vortex-liquid state. Our results signify strong coupling of the CDW to mobile superconducting vortices and link enhanced CDW amplitude with local superconducting pairing across the H - T phase diagram.

10.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363374

RESUMO

Cu-to-Cu direct bonding plays an important role in three-dimensional integrated circuits (3D IC). However, the bonding process always requires high temperature, high pressure, and a high degree of consistency in height. In this study, Sn is passivated over electroplated copper. Because Sn is a soft material and has a low melting point, a successful bond can be achieved under low temperature and low pressure (1 MPa) without any planarization process. In this experiment, Sn thickness, bonding temperature, and bonding pressure are variables. Three values of thicknesses of Sn, i.e., 1 µm, 800 nm, and 600 nm were used to calculate the minimum value of Sn thickness required to compensate for the height difference. Additionally, the bonding process was conducted at two temperatures, 220 °C and 250 °C, and their optimized parameters with required pressure were found. Moreover, the optimized parameters after the Cu planarization were also investigated, and it was observed that the bonding can succeed under severe conditions as well. Finally, transmission electron microscopy (TEM) was used to observe the adhesion property between different metals and intermetallic compounds (IMCs).

11.
Sci Rep ; 12(1): 12755, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882897

RESUMO

In recent years, solid-state bonding has attracted attention for various electronic packaging applications as an alternative to conventional solders. Surface-nanostructured materials enable solid-state bonding without complex surface modifications and operate at a low bonding temperature and pressure. Therefore, in this study, molecular dynamics simulations were conducted to investigate the solid-state bonding behavior between surface-nanostructured Cu and Au, with a focus on diffusion phenomena. A periodic ligament-cavity nanostructured Cu (NS-Cu) model was prepared at the bonding interface between Cu and Au slabs. The simulation results indicated that the larger the specific surface area of NS-Cu, the faster the densification at the bonding interface. Atomic displacement analysis showed that rapid densification occurred via the displacement of Cu and Au atoms in the vicinity of NS-Cu. The preferential diffusion of atoms along NS-Cu cavities contributed to this phenomenon. At this stage of densification, the diffusion coefficients were higher than the surface diffusion coefficients estimated based on literature, which indicates that this behavior is specific to surface-nanostructured materials. The highly disordered atomic arrangement at the bonding interface enabled significant atomic diffusion. Therefore, this study confirmed that the use of surface-nanostructured materials would contribute to a promising bonding technology for application in electronics.

12.
Materials (Basel) ; 15(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35744357

RESUMO

The use of scaled-down micro-bumps in miniaturized consumer electronic products has led to the easy realization of full intermetallic solder bumps owing to the completion of the wetting layer. However, the direct contact of the intermetallic compounds (IMCs) with the adhesion layer may pose serious reliability concerns. In this study, the terminal reaction of the Ti adhesion layer with Cu-Sn IMCs was investigated by aging the micro-bumps at 200 °C. Although all of the micro-bumps transformed into intermetallic structures after aging, they exhibited a strong attachment to the Ti adhesion layer, which differs significantly from the Cr system where spalling of IMCs occurred during the solid-state reaction. Moreover, the difference in the diffusion rates between Cu and Sn might have induced void formation during aging. These voids progressed to the center of the bump through the depleting Cu layer. However, they neither affected the attachment between the IMCs and the adhesion layer nor reduced the strength of the bumps. In conclusion, the IMCs demonstrated better adhesive behavior with the Ti adhesion layer when compared to Cr, which has been used in previous studies.

13.
J Environ Manage ; 311: 114853, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276566

RESUMO

The effectiveness of different treatment processes on assimilable organic carbon (AOC) removal and bacterial diversity variations was evaluated in a water treatment plant. The van der Kooij technique was applied for AOC analysis and responses of bacterial communities were characterized by the metagenomics assay. Results show that the AOC concentrations were about 93, 148, 43, 51, 37, and 38 µg acetate-C/L in effluents of raw water basin, preozonation, rapid sand filtration (RSF), ozonation, biofiltration [biological activated carbon (BAC) filtration], and chlorination (clear water), respectively. Increased AOC concentrations were observed after preozonation, ozonation, and chlorination units due to the production of biodegradable organic matters after the oxidation processes. Results indicate that the oxidation processes were the main causes of AOC formation, which resulted in significant increases in AOC concentrations (18-59% increment). The AOC removal efficiencies were 47, 28, and 60% in the RSF, biofiltration, and the whole system, respectively. RSF and biofiltration were responsible for the AOC treatment and both processes played key roles in AOC removal. Thus, both RSF and biofiltration processes would contribute to AOC treatment after oxidation. Sediments from the raw water basin and filter samples from RSF and BAC units were collected and analyzed for bacterial communities. Results from scanning electron microscope analysis indicate that bacterial colonization was observed in filter materials. This indicates that the surfaces of the filter materials were beneficial to bacterial growth and AOC removal via the adsorption and biodegradation mechanisms. Next generation sequencing analyses demonstrate that water treatment processes resulted in the changes of bacterial diversity and community profiles in filters of RSF and BAC. According to the findings of bacterial composition and interactions, the dominant bacterial phyla were Proteobacteria (41% in RSF and 56% in BAC) followed by Planctomycetes and Acidobacteria in RSF and BAC systems, which might affect the AOC biodegradation efficiency. Results would be useful in developing AOC treatment and management processes in water treatment plants.

14.
Chemosphere ; 299: 134434, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35351476

RESUMO

The advancements in electrode materials with high efficiency has been prioritized to effectively monitor the presence of harmful pesticides concerning the environment. In such a way, we hydrothermally constructed a hybrid AgWO4-rGO nanocomposites for the rapid electrochemical detection of crisquat (CQT). The structural, compositional, morphological and topographical characterization for AgWO4-rGO nanocomposites is thoroughly performed to understand its electrocatalytic properties. The AgWO4-rGO nanocomposites are used as an electrode enhancer (rGO@AgWO4/GCE) for the electrochemical investigations towards CQT detection. The results indicated that the rGO@AgWO4/GCE possessed an excellent catalytic activity with a wide linear detection range 1-1108 µM coupled with an ultrasensitive limit of detection (LOD) 0.0661 µM for electrochemical CQT detection. The rGO@AgWO4/GCE CQT sensor also expressed remarkable sensitivity of 0.6306 µAµM-1cm-2 in addition to good selectivity and reproducibility. Furthermore, the commercial CQT, river water, tap water and washed vegetable water are used as a representative for real world analysis using rGO@AgWO4/GCE and results are highly appreciable for the real time CQT detection. Our work proposes a novel hybrid rGO@AgWO4 nanocomposites reinforced electrodes for ultra-trace level CQT detection with good reliability and can be advocated for real time detection of pesticides.


Assuntos
Grafite , Herbicidas , Nanocompostos , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Nanocompostos/química , Reprodutibilidade dos Testes , Água
15.
Mol Ther Nucleic Acids ; 27: 335-348, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35024245

RESUMO

A functional cure of chronic hepatitis B requires eliminating the hepatitis B virus (HBV)-encoded surface antigen (HBsAg), which can suppress immune responses. STOPS are phosphorothioated single-stranded oligonucleotides containing novel chemistries that significantly reduce HBsAgs produced by HBV-infected liver cells. The STOPS molecule ALG-10000 functions inside cells to reduce the levels of multiple HBV-encoded molecules. However, it does not bind HBV molecules. An affinity resin coupled with ALG-10000 was found to bind several proteins from liver cells harboring replicating HBV. Silencing RNAs targeting host factors SRSF1, HNRNPA2B1, GRP78 (HspA5), RPLP1, and RPLP2 reduced HBsAg levels and other HBV molecules that are concomitantly reduced by STOPS. Host proteins RPLP1/RPLP2 and GRP78 function in the translation of membrane proteins, protein folding, and degradation. ALG-10000 and the knockdowns of RPLP1/2 and GRP78 decreased the levels of HBsAg and increased their ubiquitination and proteasome degradation. GRP78, RPLP1, and RPLP2 affected HBsAg production only when HBsAg was expressed with HBV regulatory sequences, suggesting that HBV has evolved to engage with these STOPS-interacting molecules. The STOPS inhibition of HBsAg levels in HBV-infected cells occurs by sequestering cellular proteins needed for proper expression and folding of HBsAg.

16.
Ultrasound Obstet Gynecol ; 59(1): 33-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34358384

RESUMO

OBJECTIVE: To assess the performance of a non-invasive prenatal screening test (NIPT) for a panel of dominant single-gene disorders (SGD) with a combined population incidence of 1 in 600. METHODS: Cell-free fetal DNA isolated from maternal plasma samples accessioned from 14 April 2017 to 27 November 2019 was analyzed by next-generation sequencing, targeting 30 genes, to look for pathogenic or likely pathogenic variants implicated in 25 dominant conditions. The conditions included Noonan spectrum disorders, skeletal disorders, craniosynostosis syndromes, Cornelia de Lange syndrome, Alagille syndrome, tuberous sclerosis, epileptic encephalopathy, SYNGAP1-related intellectual disability, CHARGE syndrome, Sotos syndrome and Rett syndrome. NIPT-SGD was made available as a clinical service to women with a singleton pregnancy at ≥ 9 weeks' gestation, with testing on maternal and paternal genomic DNA to assist in interpretation. A minimum of 4.5% fetal fraction was required for test interpretation. Variants identified in the mother were deemed inconclusive with respect to fetal carrier status. Confirmatory prenatal or postnatal diagnostic testing was recommended for all screen-positive patients and follow-up information was requested. The screen-positive rates with respect to the clinical indication for testing were evaluated. RESULTS: A NIPT-SGD result was available for 2208 women, of which 125 (5.7%) were positive. Elevated test-positive rates were observed for referrals with a family history of a disorder on the panel (20/132 (15.2%)) or a primary indication of fetal long-bone abnormality (60/178 (33.7%)), fetal craniofacial abnormality (6/21 (28.6%)), fetal lymphatic abnormality (20/150 (13.3%)) or major fetal cardiac defect (4/31 (12.9%)). For paternal age ≥ 40 years as a sole risk factor, the test-positive rate was 2/912 (0.2%). Of the 125 positive cases, follow-up information was available for 67 (53.6%), with none classified as false-positive. No false-negative cases were identified. CONCLUSIONS: NIPT can assist in the early detection of a set of SGD, particularly when either abnormal ultrasound findings or a family history is present. Additional clinical studies are needed to evaluate the optimal design of the gene panel, define target populations and assess patient acceptability. NIPT-SGD offers a safe and early prenatal screening option. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Ácidos Nucleicos Livres/sangue , Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Teste Pré-Natal não Invasivo/métodos , Adulto , Feminino , Feto/embriologia , Doenças Genéticas Inatas/embriologia , Idade Gestacional , Humanos , Gravidez
17.
Phys Rev Lett ; 126(16): 167001, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961453

RESUMO

The presence of a small concentration of in-plane Fe dopants in La_{1.87}Sr_{0.13}Cu_{0.99}Fe_{0.01}O_{4} is known to enhance stripelike spin and charge density wave (SDW and CDW) order and suppress the superconducting T_{c}. Here, we show that it also induces highly two-dimensional superconducting correlations that have been argued to be the signatures of a new form of superconducting order, the so-called pair density wave (PDW) order. In addition, using resonant soft x-ray scattering, we find that the two-dimensional superconducting fluctuation is strongly associated with the CDW stripe. In particular, the PDW signature first appears when the correlation length of the CDW stripe grows over eight times the lattice unit (∼8a). These results provide critical conditions for the formation of the PDW order.

18.
J Instrum ; 16(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33868448

RESUMO

Precise quantitative delineation of tumor hypoxia is essential in radiation therapy treatment planning to improve the treatment efficacy by targeting hypoxic sub-volumes. We developed a combined imaging system of positron emission tomography (PET) and electron para-magnetic resonance imaging (EPRI) of molecular oxygen to investigate the accuracy of PET imaging in assessing tumor hypoxia. The PET/EPRI combined imaging system aims to use EPRI to precisely measure the oxygen partial pressure in tissues. This will evaluate the validity of PET hypoxic tumor imaging by (near) simultaneously acquired EPRI as ground truth. The combined imaging system was constructed by integrating a small animal PET scanner (inner ring diameter 62 mm and axial field of view 25.6 mm) and an EPRI subsystem (field strength 25 mT and resonant frequency 700 MHz). The compatibility between the PET and EPRI subsystems were tested with both phantom and animal imaging. Hypoxic imaging on a tumor mouse model using 18F-fluoromisonidazole radio-tracer was conducted with the developed PET/EPRI system. We report the development and initial imaging results obtained from the PET/EPRI combined imaging system.

19.
J Hum Nutr Diet ; 34(2): 334-344, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089908

RESUMO

BACKGROUND: Multiple studies have uncovered the effects that ingested fat has on human blood levels of testosterone. Yet, few reports have discussed the effect of circulating serum free fatty acids (FFAs). The present study aimed to explore the relationship between serum free fatty acids and blood levels of testosterone. METHODS: In total, 5719 adults were pooled from the database of the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2012. Based on multivariable-linear regression models, we employed a total of 30 FFAs to interpret the relationship of FFAs with blood levels of testosterone. Two models with covariate adjustments were designated for further evaluation and analysis. RESULTS: Capric acid [ß = -0.014, 95% confidence interval (CI) = -0.023, -0.004, P = 0.005], myristic acid (ß = -0.001, 95% CI = -0.001, 0.000, P ≤ 0.001), pentadecanoic acid (ß = -0.013, 95% CI = -0.018, -0.008, P ≤ 0.001), margaric acid (ß = -0.011, 95% CI = -0.017, -0.005, P ≤ 0.001) and alpha-linolenic acid (ß = -0.001, 95% CI = -0.002, 0.000, P = 0.004) in the fully adjusted model were significantly negatively correlated with the testosterone level inh obese men. In the fully adjusted model for the female analysis, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, myristoleic acid, oleic acid, nervonic acid and alpha-linolenic acid were found significantly associated with the testosterone level. CONCLUSIONS: Our findings indicate a significant negative correlation between serum FFAs and blood levels of testosterone. Furthermore, we reveal the essentiality of serum FFAs and their potential effects on the reduction of testosterone levels.


Assuntos
Ácidos Graxos não Esterificados , Testosterona , Adulto , Ácidos Graxos , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Ácido Oleico , Ácido Palmítico
20.
Sci Adv ; 6(23): eaaz5132, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32548258

RESUMO

Iron is one of the most studied chemical elements due to its sociotechnological and planetary importance; hence, understanding its structural transition dynamics is of vital interest. By combining a short pulse optical laser and an ultrashort free electron laser pulse, we have observed the subnanosecond structural dynamics of iron from high-quality x-ray diffraction data measured at 50-ps intervals up to 2500 ps. We unequivocally identify a three-wave structure during the initial compression and a two-wave structure during the decaying shock, involving all of the known structural types of iron (α-, γ-, and ε-phase). In the final stage, negative lattice pressures are generated by the propagation of rarefaction waves, leading to the formation of expanded phases and the recovery of γ-phase. Our observations demonstrate the unique capability of measuring the atomistic evolution during the entire lattice compression and release processes at unprecedented time and strain rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA