Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309155, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894561

RESUMO

A cost-effective chemical prelithiation solution, which consists of Li+, polyaromatic hydrocarbon (PAH), and solvent, is developed for a model hard carbon (HC) electrode. Naphthalene and methyl-substituted naphthalene PAHs, namely 2-methylnaphthalene and 1-methylnaphthalene, are first compared. Grafting an electron-donating methyl group onto the benzene ring can decrease electron affinity and thus reduce the redox potential, which is validated by density functional theory calculations. Ethylene glycol dimethyl ether (G1), diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether solvents are then compared. The G1 solution has the highest conductivity and least steric hindrance, and thus the 1-methylnaphthalene/G1 solution shows superior prelithiation capability. In addition, the effects of the interaction time between Li+ and 1-methylnaphthalene in G1 solvent on the electrochemical properties of a prelithiated HC electrode are investigated. Nuclear magnetic resonance data confirm that 10-h aging is needed to achieve a stable solution coordination state and thus optimal prelithiation efficacy. It is also found that appropriate prelithiation creates a more Li+-conducing and robust solid-electrolyte interphase, improving the rate capability and cycling stability of the HC electrode.

2.
Nat Commun ; 15(1): 413, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195553

RESUMO

Near infrared energy remains untapped toward the maneuvering of entire solar spectrum harvesting for fulfilling the nuts and bolts of solar hydrogen production. We report the use of Au@Cu7S4 yolk@shell nanocrystals as dual-plasmonic photocatalysts to achieve remarkable hydrogen production under visible and near infrared illumination. Ultrafast spectroscopic data reveal the prevalence of long-lived charge separation states for Au@Cu7S4 under both visible and near infrared excitation. Combined with the advantageous features of yolk@shell nanostructures, Au@Cu7S4 achieves a peak quantum yield of 9.4% at 500 nm and a record-breaking quantum yield of 7.3% at 2200 nm for hydrogen production in the absence of additional co-catalysts. The design of a sustainable visible- and near infrared-responsive photocatalytic system is expected to inspire further widespread applications in solar fuel generation. In this work, the feasibility of exploiting the localized surface plasmon resonance property of self-doped, nonstoichiometric semiconductor nanocrystals for the realization of wide-spectrum-driven photocatalysis is highlighted.

3.
Adv Sci (Weinh) ; 10(32): e2301490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672878

RESUMO

Recently, all-solid-state sodium batteries (Na-ASSBs) have received increased interest owing to their high safety and potential of high energy density. The potential of Na-ASSBs based on sodium superionic conductor (NASICON)-structured Na3 V2 (PO4 )3 (Na3 VP) cathodes have been proven by their high capacity and a long cycling stability closely related to the microstructural evolution. However, the detailed kinetics of the electrochemical processes in the cathodes is still unclear. In this work, the sodiation/desodiation process of Na3 VP is first investigated using in situ high-resolution transmission electron microscopy (HRTEM). The intermediate Na2 V2 (PO4 )3 (Na2 VP) phase with the P21 /c space group, which would be inhibited by constant electron beam irradiation, is observed at the atomic scale. With the calculated volume change and the electrode-electrolyte interface after cycling, it can be concluded that the  Na2 VP phase reduces the lattice mismatch between Na3 VP and NaV2 (PO4 )3 (NaVP), preventing structural collapse. Based on the density functional theory calculation (DFT), the Na+ ion migrates more rapidly in the Na2 VP structure, which facilitates the desodiation and sodiation processes. The formation of  Na2 VP phase lowers the formation energy of NaVP. This study demonstrates the dynamic evolution of the Na3 VP structure, paving the way for an in-depth understanding of electrode materials for energy-storage applications.

4.
Small ; 19(40): e2303391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267938

RESUMO

A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.

5.
Small ; 19(44): e2303491, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381620

RESUMO

Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.

6.
ACS Cent Sci ; 6(6): 984-994, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32607445

RESUMO

Cu2O rhombic dodecahedra, octahedra, and cubes were densely modified with conjugated 4-ethynylaniline (4-EA) for facet-dependent photocatalytic activity examination. Infrared spectroscopy affirms bonding of the acetylenic group of 4-EA onto the surface copper atoms. The photocatalytically inactive Cu2O cubes showed surprisingly high activity toward methyl orange photodegradation after 4-EA modification, while the already active Cu2O rhombic dodecahedra and octahedra exhibited a photocatalytic activity enhancement. Electron, hole, and radical scavenger experiments prove that the photocatalytic charge transport processes have occurred in the functionalized Cu2O cubes. Electrochemical impedance spectroscopy also indicates reduced charge transfer resistance of the functionalized Cu2O crystals. A band diagram constructed from UV-vis spectral and Mott-Schottky measurements reveals significant band energy shifts in all Cu2O samples after decorating with 4-EA. From density functional theory (DFT) calculations, a new band has emerged slightly above the valence band maximum within the band gap of Cu2O, which has been found to originate from 4-EA through band-decomposed charge density analysis. The increased charge density localized on the 4-EA molecule and the smallest electron transition energy to reach the 4-EA-generated band are factors making {100}-bound Cu2O cubes photocatalytically active. Proper molecular decoration represents a powerful approach to improving the photocatalytic efficiency of semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA