Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Genet ; 12: 618170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122498

RESUMO

The exponential growth of genome sequences available has spurred research on pattern detection with the aim of extracting evolutionary signal. Traditional approaches, such as multiple sequence alignment, rely on positional homology in order to reconstruct the phylogenetic history of taxa. Yet, mining information from the plethora of biological data and delineating species on a genetic basis, still proves to be an extremely difficult problem to consider. Multiple algorithms and techniques have been developed in order to approach the problem multidimensionally. Here, we propose a computational framework for identifying potentially meaningful features based on k-mers retrieved from unaligned sequence data. Specifically, we have developed a process which makes use of unsupervised learning techniques in order to identify characteristic k-mers of the input dataset across a range of different k-values and within a reasonable time frame. We use these k-mers as features for clustering the input sequences and identifying differences between the distributions of k-mers across the dataset. The developed algorithm is part of an innovative and much promising approach both to the problem of grouping sequence data based on their inherent characteristic features, as well as for the study of changes in the distributions of k-mers, as the k-value is fluctuating within a range of values. Our framework is fully developed in Python language as an open source software licensed under the MIT License, and is freely available at https://github.com/BiodataAnalysisGroup/kmerAnalyzer.

2.
Front Genet ; 12: 660366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122513

RESUMO

A recent refinement in high-throughput sequencing involves the incorporation of unique molecular identifiers (UMIs), which are random oligonucleotide barcodes, on the library preparation steps. A UMI adds a unique identity to different DNA/RNA input molecules through polymerase chain reaction (PCR) amplification, thus reducing bias of this step. Here, we propose an alignment free framework serving as a preprocessing step of fastq files, called UMIc, for deduplication and correction of reads building consensus sequences from each UMI. Our approach takes into account the frequency and the Phred quality of nucleotides and the distances between the UMIs and the actual sequences. We have tested the tool using different scenarios of UMI-tagged library data, having in mind the aspect of a wide application. UMIc is an open-source tool implemented in R and is freely available from https://github.com/BiodataAnalysisGroup/UMIc.

3.
EMBO Rep ; 21(4): e50388, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32216085

RESUMO

University accountants and administrators should support scientists going to meetings, not further burden them with bureaucratic hurdles, expense claims or unnecessary auditing.


Assuntos
Viagem , Humanos
5.
J Biol Res (Thessalon) ; 25: 11, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29946534

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in gene regulation in both plants and animals. MicroRNA biogenesis involves the enzymatic processing of a primary RNA transcript. The final step is the production of a duplex molecule, often designated as miRNA:miRNA*, that will yield a functional miRNA by separation of the two strands. This miRNA will be incorporated into the RNA-induced silencing complex, which subsequently will bind to its target mRNA in order to suppress its expression. The analysis of miRNAs is still a developing area for computational biology with many open questions regarding the structure and function of this important class of molecules. Here, we present StarSeeker, a simple tool that outputs the putative miRNA* sequence given the precursor and the mature sequences. RESULTS: We evaluated StarSeeker using a dataset consisting of all plant sequences available in miRBase (6992 precursor sequences and 8496 mature sequences). The program returned a total of 15,468 predicted miRNA* sequences. Of these, 2650 sequences were matched to annotated miRNAs (~ 90% of the miRBase-annotated sequences). The remaining predictions could not be verified, mainly because they do not comply with the rule requiring the two overhanging nucleotides in the duplex molecule. CONCLUSIONS: The expression pattern of some miRNAs in plants can be altered under various abiotic stress conditions. Potential miRNA* molecules that do not degrade can thus be detected and also discovered in high-throughput sequencing data, helping us to understand their role in gene regulation.

6.
J Biol Res (Thessalon) ; 25: 2, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29796383

RESUMO

BACKGROUND: Halophilic organisms may thrive in or tolerate high salt concentrations. They have been studied for decades and a considerable number of papers reporting new halophilic species are being published every year. However, an extensive collection of these salt-loving organisms does not exist nowadays. Halophilic life forms have representatives from all three life domains, Archaea, Bacteria and Eukarya. The purpose of this study was to search for all documented halophilic species in the scientific literature and accommodate this information in the form of an online database. RESULTS: We recorded more than 1000 halophilic species from the scientific literature. From these, 21.9% belong to Archaea, 50.1% to Bacteria and 27.9% to Eukaryotes. Our records contain basic information such as the salinity that a particular organism was found, its taxonomy and genomic information via NCBI and other links. The online database named "HaloDom" can be accessed at http://www.halodom.bio.auth.gr. CONCLUSIONS: Over the last few years, data on halophiles are growing fast. Compared to previous efforts, this new halophiles database expands its coverage to all life domains and offers a valuable reference system for studies in biotechnology, early life evolution and comparative genomics.

7.
PLoS One ; 11(12): e0166988, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907107

RESUMO

A very significant part of the world's freshwater ichthyofauna is represented by ancient, exceptionally diverse and cosmopolitan ray-finned teleosts of the order Siluriformes. Over the years, catfish have been established as an exemplary model for probing historical biogeography at various scales. Yet, several tantalizing gaps still exist in their phylogenetic history, timeline and mode of diversification. Here, we re-examine the phylogeny of catfish by assembling and analyzing almost all publicly available mitogenome data. We constructed an ingroup matrix of 62 full-length mitogenome sequences from 20 catfish families together with four cypriniform outgroups, spanning 15,557 positions in total. Partitioned maximum likelihood analyses and Bayesian relaxed clock dating using fossil age constraints provide some useful and novel insights into the evolutionary history of this group. Loricarioidei are recovered as the first siluriform group to diversify, rendering Neotropics the cradle of the order. The next deepest clade is the South American Diplomystoidei placed as a sister group to all the remaining Siluroidei. The two multifamilial clades of "Big Asia" and "Big Africa" are also recovered, albeit nodal support for the latter is poor. Within "Big Asia", Bagridae are clearly polyphyletic. Other interfamilial relationships, including Clariidae + Heteropneustidae, Doradidae + Auchenipteridae and Ictaluridae + Cranoglanididae are robustly resolved. Our chronogram shows that siluriforms have a Pangaean origin, at least as far back as the Early Cretaceous. The inferred timeline of the basal splits corroborates the "Out-of-South America" hypothesis and accords well with the fossil record. The divergence of Siluroidei most likely postdated the final separation of Africa and South America. An appealing case of phylogenetic affinity elaborated by biogeographic dispersal is exemplified by the Early Paleogene split between the Southeast Asian Cranoglanididae and Ictaluridae, with the latter radiating into North America's freshwater realm by Eocene. The end of Cretaceous probably concludes the major bout of diversification at the family level while with the dawn of the Cenozoic a prolific radiation is evident at the generic level.


Assuntos
Peixes-Gato/classificação , Cipriniformes/classificação , Genoma Mitocondrial , Mitocôndrias/genética , Filogenia , África , Animais , Teorema de Bayes , Evolução Biológica , Peixes-Gato/genética , Cipriniformes/genética , Fósseis , Modelos Genéticos , América do Norte , Filogeografia , América do Sul
8.
Zootaxa ; 3873(4): 345-70, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25544227

RESUMO

Brachionus sessilis Varga, 1951 is an epizoic rotifer living exclusively on cladocerans of the genus Diaphanosoma. Current taxonomic knowledge relies solely on limited morphological information, whereas there is no type material. Here, we aim to resolve issues concerning its morphology and taxonomy using both morphological and genetic characters on material sampled from Lake Balaton (Hungary), as well as Lake Doirani (Greece) that was selected for comparison purposes. Biometrical analysis was based on extensive lorica measurements. Phylogenetic reconstruction was based on DNA sequence information of the mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA gene regions as well as of the nuclear internal transcribed spacer 1 (ITS1). Well-supported evidence for substantial differentiation of B. sessilis from its closest phylogenetic relatives supports its species-rank status. Our phylogenetic analysis suggests a highly supported clade encompassing B. sessilis and another epizoic rotifer, namely B. rubens. 


Assuntos
Rotíferos/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Feminino , Masculino , Tamanho do Órgão , Filogenia , Rotíferos/anatomia & histologia , Rotíferos/genética , Rotíferos/crescimento & desenvolvimento
9.
PLoS One ; 6(5): e19813, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629695

RESUMO

The evolutionary relationships among known Chlamydophila abortus variant strains including the LLG and POS, previously identified as being highly distinct, were investigated based on rRNA secondary structure information. PCR-amplified overlapping fragments of the 16S, 16S-23S intergenic spacer (IS), and 23S domain I rRNAs were subjected to cloning and sequencing. Secondary structure analysis revealed the presence of transitional single nucleotide variations (SNVs), two of which occurred in loops, while seven in stem regions that did not result in compensatory substitutions. Notably, only two SNVs, in 16S and 23S, occurred within evolutionary variable regions. Maximum likelihood and Bayesian phylogeny reconstructions revealed that C. abortus strains could be regarded as representing two distinct lineages, one including the "classical" C. abortus strains and the other the "LLG/POS variant", with the type strain B577(T) possibly representing an intermediate of the two lineages. The two C. abortus lineages shared three unique (apomorphic) characters in the 23S domain I and 16S-23S IS, but interestingly lacked synapomorphies in the 16S rRNA. The two lineages could be distinguished on the basis of eight positions; four of these comprised residues that appeared to be signature or unique for the "classical" lineage, while three were unique for the "LLG/POS variant". The U277 (E. coli numbering) signature character, corresponding to a highly conserved residue of the 16S molecule, and the unique G681 residue, conserved in a functionally strategic region also of 16S, are the most pronounced attributes (autapomorphies) of the "classical" and the "LLG/POS variant" lineages, respectively. Both lineages were found to be descendants of a common ancestor with the Prk/Daruma C. psittaci variant. Compared with the "classical", the "LLG/POS variant" lineage has retained more ancestral features. The current rRNA secondary structure-based analysis and phylogenetic inference reveal new insights into how these two C. abortus lineages have differentiated during their evolution.


Assuntos
Chlamydophila/genética , Evolução Molecular , Filogenia , RNA Ribossômico/genética , Teorema de Bayes , Chlamydophila/classificação , Funções Verossimilhança , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
10.
Mol Phylogenet Evol ; 58(2): 353-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21145977

RESUMO

Asexual organisms are confronted with substantial drawbacks, both immediate and delayed, threatening their evolutionary persistence. Yet, genetic associations with asexuality may refresh the gene pool promoting adaptation of clonal lineages; polyploidy is one of them. Parthenogenesis itself and/or polyploidy are responsible for the maintenance and spread of clones in Artemia, a sexual-asexual genus of halophilic anostracans. We applied flow cytometry, microsatellite genotyping, and mtDNA sequencing to 23 asexual populations. Artemia parthenogens have evolved multiple times either through hybridization or spontaneously. Nine out of 23 populations contained clones of mixed ploidy (2n, 3n, 4n). Most clones were diploid (20/31) while two and nine clones were triploid and tetraploid, respectively. Apomictic triploids and tetraploids formed two distinct groups of low genetic diversity compared with the more divergent automictic diploids. Polyploidy is also polyphyletic in Artemia, with triploids and tetraploids having independent origins from different sexual ancestors. We discern a pattern of geographical parthenogenesis with all clonal groups being more widespread than their closest sexuals. In favour of a specialist model, asexual diploids are restricted to single locations and are strikingly segregated from generalist triploids and tetraploids occupying a variety of sites. This is a rare pattern of mixed life-history strategies within an asexual complex.


Assuntos
Artemia/genética , Evolução Molecular , Genética Populacional , Poliploidia , Animais , DNA Mitocondrial/genética , Citometria de Fluxo , Genótipo , Geografia , Repetições de Microssatélites , Modelos Genéticos , Partenogênese/genética , Filogenia
11.
J Exp Bot ; 61(11): 2991-3002, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20478966

RESUMO

Phospholipase Dalpha (PLDalpha) was isolated from cultivated cotton (Gossypium hirsutum) and characterized. Two PLDalpha genes were identified in the allotetraploid genome of G. hirsutum, derived from its diploid progenitors, G. raimondii and G. arboreum. The genes contained three exons and two introns. The translated products shared a 98.6% homology and were designated as GrPLDalpha and GaPLDalpha. Their ORFs encoded a polypeptide of 807 amino acids with a predicted molecular mass of 91.6 kDa sharing an 81-82% homology with PLDalpha1 and PLDalpha2 from A. thaliana. A possible alternative splicing event was detected at the 5' untranslated region which, however, did not result in alternative ORFs. Cold stress (10 degrees C or less) resulted in gene induction which was suppressed below control levels (25 degrees C or 22 degrees C growth temperature) when plants were acclimated at 17 degrees C before applying the cold treatment. Differences in the expression levels of the isoforms were recorded under cold acclimation, and cold stress temperatures. Expression was light regulated under growth, acclimation, and cold stress temperatures. Characterization of the products of lipid hydrolysis by the endogenous PLDalpha indicated alterations in lipid species and a variation in levels of the signalling molecule phosphatidic acid (PA) following acclimation or cold stress.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Gossypium/enzimologia , Gossypium/fisiologia , Fosfolipases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Temperatura Baixa , Gossypium/genética , Gossypium/efeitos da radiação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Dados de Sequência Molecular , Fosfolipases/química , Fosfolipases/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/enzimologia , Plantas/genética , Alinhamento de Sequência
12.
Mol Phylogenet Evol ; 52(1): 192-204, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19306934

RESUMO

Over the years, studies on interspecific hybridization have highlighted cases where gene exchange between taxa continues for a significant amount of time after speciation. The reasons for this lag of reproductive isolation relative to genetic isolation are largely unclear, and the question still remains whether the resulting hybrids represent novel biological (and taxonomic) diversity or merely an evolutionary liability. We provide strong indications in the branchiopod Artemia that hybrids between distantly related species may not be evolutionary inconsequential. Based on a global sampling of published and newly derived nuclear (ITS1) and mitochondrial (16S rRNA) sequence data from all representatives of the genus, we have identified natural hybrids between Artemia species (A. persimilisxA. franciscana, A. salinaxA. franciscana) separated by evolutionary interludes of tens of millions of years. Our combined analytical framework of cladistic and network methods provides evidence that hybridizations are the result of recent secondary contact following pronounced allopatric differentiation. The detection of mitochondrial introgression from A. persimilis to A. franciscana attests F(1) hybrid fertility. The reasons for this apparent unidirectionality of introgression are currently unknown but a likely explanation is provided based on morphometric divergence. We discuss the evolutionary implications of our results within the broader context of continental zooplankters.


Assuntos
Artemia/genética , Evolução Molecular , Hibridização Genética , Filogenia , Animais , Artemia/classificação , Núcleo Celular/genética , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Especiação Genética , Modelos Genéticos , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
13.
Int J Mol Sci ; 10(12): 5455-5470, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20054480

RESUMO

Genealogical concordance is a critical overlay of all phylogenetic analyses, irrespective of taxonomic level. To assess such patterns of congruence we have compiled and derived sequence data for two mitochondrial (16S rRNA, COI) and two nuclear (ITS1, p26) markers in 14 American populations of the hypersaline branchiopod Artemia franciscana. Cladistic analysis revealed three reciprocally monophyletic mitochondrial clades. For nuclear DNA, incomplete lineage sorting was evident presumably as a result of slower coalescence or male-mediated dispersal. Our findings capture the genealogical interval between gene splitting and population divergence. In this sense, strong indications are provided in favour of a superspecies status and ongoing speciation in A. franciscana.


Assuntos
Distribuição Animal , Artemia/classificação , Artemia/genética , Filogenia , Animais , Feminino , Genes Mitocondriais , Especiação Genética , Masculino , Filogeografia , RNA Ribossômico 16S/genética , Fatores Sexuais
14.
Mar Biotechnol (NY) ; 11(1): 53-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18592313

RESUMO

Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently.


Assuntos
Reação em Cadeia da Polimerase/métodos , Rotíferos/classificação , Rotíferos/genética , Animais , Sequência de Bases , DNA/genética , Regulação da Expressão Gênica , Dados de Sequência Molecular , Reprodutibilidade dos Testes
15.
Mar Biotechnol (NY) ; 8(5): 547-59, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16841270

RESUMO

The marine finfish industry worldwide depends greatly on the mass culture of Brachionus rotifers. Recently, molecular data have revealed a more complicated view about the species status of Brachionus rotifers than previous mainly morphological assessments. Under this view, Brachionus rotifers are comprised of many morphologically similar, albeit genetically differentiated, cryptic members of larger groups. A redefinition of the cultured rotifer species/biotypes is therefore needed if aquaculture is to reach higher levels of standardization and predictability. In this work, restriction fragment length polymorphism (RFLP) and single-strand conformational polymorphism (SSCP) methods are applied to the COI and 16S rRNA mitochondrial genes. A detailed COI restriction map was constructed, using sequence data from all known representatives of Brachionus phylogroups. Therefore, it is the first time that such an extended restriction database has been produced. Several restriction endonucleases are proposed for the discrimination of the different Brachionus species/biotypes. Furthermore, eight different SSCP gel alleles are described for the 16S region. Using these data, five Brachionus species/biotypes were identified in 78 samples collected from laboratories and hatcheries around the world.


Assuntos
Polimorfismo de Fragmento de Restrição , Polimorfismo Conformacional de Fita Simples , Rotíferos/classificação , Rotíferos/genética , Animais , Filogenia , Mapeamento por Restrição , Especificidade da Espécie
16.
Mol Phylogenet Evol ; 40(3): 724-38, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16753307

RESUMO

Explaining cases of long-term persistence of parthenogenesis has proven an arduous task for evolutionary biologists. Interpreting sexual-asexual interactions though has recently advanced owing to methodological design, increased taxon sampling and choice of model organisms. We inferred the phylogeny of Artemia, a halophilic branchiopod genus of sexual and parthenogenetic forms with cosmopolitan distribution, marked geographic patterns and ecological partitioning. Joint analysis of newly derived ITS1 sequences and 16S RFLP markers from global isolates indicates significant interspecific divergence as well as pronounced diversity for parthenogens, matching that of sexual ancestors. Maximum parsimony, maximum likelihood, and Bayesian methods were largely congruent in reconstructing the phylogeny of the genus. Given the current sampling, at least four independent origins of parthenogenesis are deduced. Molecular clock calibrations based on biogeographic landmarks indicate that the lineage leading to A. persimilis diverged from the common ancestor of all Artemia species between 80 and 90 MYA at the time of separation of Africa from South America, whereas parthenogenesis first appeared at least 3 MYA. Common mitochondrial DNA haplotypes delineate A. urmiana and A. tibetiana as possible maternal parents of several clonal lineages. A novel topological placement of A. franciscana as a sister clade to all Asian Artemia and parthenogenetic forms is proposed and also supported by ITS1 length and other existing data.


Assuntos
Artemia/genética , Artemia/fisiologia , Genética Populacional , Filogenia , Reprodução Assexuada/fisiologia , Animais , Sequência de Bases , Nucléolo Celular/genética , DNA Mitocondrial/análise , DNA Espaçador Ribossômico , Embrião não Mamífero , Feminino , Variação Genética , Geografia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA