Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754865

RESUMO

This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of A. manshuriensis extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC50 of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs' treatment-induced cytotoxicity in fibroblast cells, yielding IC50 values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including Agrobacterium rhizogenes, A. tumefaciens, Bacillus subtilis, and Escherichia coli. These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders.

2.
Colloids Surf B Biointerfaces ; 207: 112031, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34392080

RESUMO

Presently, multifunctional silver nanoparticles (AgNPs) show a rapid growth in various commercial applications, leading to increasing demand for new eco-friendly manufacturing technologies. An array of genetic engineering tools can be used to increase the yield in the production of AgNPs using various biological systems. The present study reports a green chemistry approach for the biological synthesis of AgNPs using extracts from non-transformed callus, rolC-transgenic callus and hairy roots of Panax ginseng and an evaluation of their efficacy against crop-damaging fungal pathogens. All types of ginseng cell lines promote the reduction of silver nitrate and formation of spherical AgNPs with an average diameter of 50-90 nm. Notably, hairy root extract possessed the maximal reduction potential among the studied cell lines probably due to higher secondary metabolite content. The biosynthesized nanoparticles were highly toxic against several wheat fungal pathogens including Fusarium graminearum, F. avenaceum, F. poae, and F. sporotrichioides, which are associated with fusarium head blight disease in cereals. Furthermore, the antifungal activity of nanosilver was successfully utilized for surface sterilization of infected wheat kernels without any negative effect on seed germination capability.


Assuntos
Fusarium , Nanopartículas Metálicas , Panax , Biomimética , Fungos , Prata , Triticum
3.
Heliyon ; 6(2): e03299, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128461

RESUMO

The production of cement is associated with the emissions of dust and particulate matter, nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), heavy metals, and volatile organic compounds into the environment. People living near cement production facilities are potentially exposed to these pollutants, including carcinogens, although at lower doses than the factory workers. In this study we focused on the distribution of fine particulate matter, the composition, size patterns, and spatial distribution of the emissions from Spassk cement plant in Primorsky Krai, Russian Federation. The particulate matter was studied in wash-out from vegetation (conifer needles) using a hybrid method of laser diffraction analysis and Raman spectroscopy. The results showed that fine particulate matter (PM10 fraction) extended to the entire town and its neighbourhood. The percentage of PM10 in different areas of the town and over the course of two seasons ranged from 34.8% to 65% relative to other size fractions of particulate matter. It was further shown that up to 80% of the atmospheric PM content at some sampling points was composed of cement-containing particles. This links the cement production in Spassk-Dalny with overall morbidity of the town population and pollution of the environment.

4.
Oxid Med Cell Longev ; 2015: 412173, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064419

RESUMO

Atmospheric microsized particles producing reactive oxygen species can pose a serious health risk for city residents. We studied the responses of organisms to microparticles in 255 healthy volunteers living in areas with different levels of microparticle air pollution. We analyzed the distribution of microparticles in snow samples by size and content. ELISA and flow cytometry methods were employed to determine the parameters of the thiol-disulfide metabolism, peroxidation and antioxidant, genotoxicity, and energy state of the leukocytes. We found that, in the park areas, microparticles with a size of 800 µm or more were predominant (96%), while in the industrial areas, they tended to be less than 50 µm (93%), including size 200-300 nm (7%). In the industrial areas, we determined the oxidative modification of proteins (21% compared to the park areas, p ≤ 0.05) and DNA (12%, p ≤ 0.05), as well as changes in leukocytes' energy potential (53%, p ≤ 0.05). An increase in total antioxidant activity (82%, p ≤ 0.01) and thiol-disulfide system response (thioredoxin increasing by 33%, p ≤ 0.01; glutathione, 30%, p ≤ 0.01 with stable reductases levels) maintains a balance of peroxidation-antioxidant processes, protecting cellular and subcellular structures from significant oxidative damage.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Adulto , Antioxidantes/metabolismo , DNA/química , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Voluntários Saudáveis , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Tamanho da Partícula , Material Particulado/química , Neve/química , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA