Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 216: 112583, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35662072

RESUMO

The composite coating can effectively inhibit bacterial proliferation and promote the expression of bone-building genes in-vitro. Therefore, a novel production was used to produce poly-ether-ether-ketone, and reduced graphene oxide (PEEK-rGO) scaffolds with ratios of 1-3%, combining a different lattice for a bone implant. An inexpensive method was developed to prepare the new coatings on the PEEK scaffold with reduced graphene oxide (rGO). Mechanical testing, data analysis and cell culture tests for in-vitro biocompatibility scaffold characterisation for the PEEK composite were conducted. Novel computation microanalysis of four-dimensional (4D) printing of microstructure of PEEK-rGO concerning the grain size and three dimensional (3D) morphology was influenced by furrow segmentation of grains cell growth on the composite, which was reduced from an average of 216-155 grains and increased to 253 grains on the last day. The proposed spherical nanoparticles cell grew with time after dispersed PEEK nanoparticles in calcium hydroxyapatite (cHAp) grains. Also, the mechanical tests were carried out to validate the strength of the new composites and compare them to that of a natural bone. The established 3D-printed PEEK composite scaffolds significantly exhibited the potential of bone implants for biomimetic heterogeneous bone repair.


Assuntos
Polietilenoglicóis , Polímeros , Benzofenonas , Éteres , Grafite , Cetonas/química , Cetonas/farmacologia , Polietilenoglicóis/química , Polímeros/química
2.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055240

RESUMO

In this work, we report the synthesis and study of nanocomposites with a biobased epoxy/amine (Epilok 60-600G/Curamine 30-952) matrix reinforced with reduced graphene oxide (rGO) or functionalised with 3-glycidoxypropyltrimethoxysilane (GLYMO-rGO). These graphene related materials (GRMs) were first dispersed into a Curamine hardener using bath ultrasonication, followed by the addition of epoxy resin. Curing kinetics were studied by DSC under non-isothermal and isothermal conditions. The addition of 1.5 wt% of GLYMO-rGO into the epoxy matrix was found to increase the degree of cure by up to 12% and glass transition temperature by 14 °C. Mechanical testing showed that the addition of 0.05 wt% GLYMO-rGO improves Young's modulus and tensile strength by 60% and 16%, respectively, compared to neat epoxy. Carbon fibre reinforced polymer (CFRP) laminates were prepared via hand lay up, using the nanocomposite system GRM/Epilok/Curamine as matrix, and were cut as CFRP adherents for lap shear joints. GRM/Epilok/Curamine was also used as adhesive to bond CFRP/CFRP and CFRP/aluminium adherents. The addition of 0.1 wt% GLYMO-rGO into the adhesive and CRFP adherents showed improved lap shear strength by 23.6% compared to neat resin, while in the case of CFRP/Aluminium joints the increase was 21.2%.

3.
Nat Commun ; 8: 15763, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28643788

RESUMO

Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.5 THz quantum cascade laser show a transparency modulation ∼80%, almost one order of magnitude larger than that reported to date at THz frequencies. Fourier-transform infrared spectroscopy provides evidence of intraband-controlled absorption bleaching. These results pave the way to the integration of graphene-based SA with electrically pumped THz semiconductor micro-sources, with prospects for applications where excitation of specific transitions on short time scales is essential, such as time-of-flight tomography, coherent manipulation of quantum systems, time-resolved spectroscopy of gases, complex molecules and cold samples and ultra-high speed communications, providing unprecedented compactness and resolution.

4.
ACS Nano ; 11(3): 2742-2755, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28102670

RESUMO

We report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 108 s-1] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below ∼2Ω/□. This is a simple and scalable production route for conductive inks for large-area printing in flexible electronics.

5.
Int Ophthalmol ; 34(3): 519-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24037592

RESUMO

The purpose of the study was to appraise the effect of loading force magnitude on the determination of the elastic modulus of the anterior lens capsule through atomic force microscopy. Four human anterior lens capsules taken during phacoemulsification cataract surgery were studied, free of epithelial cells, with atomic force microscopy. For the experiment, five different indentation loading forces were applied to near areas of the specimen. Experimental data was exported and analyzed according to the Hertz model to obtain the Young's modulus with regards to the elastic behavior of the material. Force-distance curves were acquired by applying a load of 2, 5, 10, 20 and 30 nN. When examining the results it was evident that determination of Young's modulus of the anterior lens capsule is dependent on the loading force concerning the examined range. Loading forces of 10 and 20 nN led to results without significant difference (p > 0.05) and more reproducible (coefficients of variation 12.4 and 11.7 %, respectively).


Assuntos
Catarata/fisiopatologia , Módulo de Elasticidade , Elasticidade/fisiologia , Cápsula do Cristalino/fisiologia , Microscopia de Força Atômica , Idoso , Idoso de 80 Anos ou mais , Tecido Elástico , Humanos , Reprodutibilidade dos Testes , Estresse Mecânico
6.
Int J Nanomedicine ; 7: 6063-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23269867

RESUMO

BACKGROUND: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. OBJECTIVE AND METHODS: In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. RESULTS: The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Plaquetas/efeitos dos fármacos , Trombose Coronária/etiologia , Trombose Coronária/prevenção & controle , Nanopartículas/administração & dosagem , Adesividade Plaquetária/efeitos dos fármacos , Stents/efeitos adversos , Células Cultivadas , Humanos , Teste de Materiais , Propriedades de Superfície
7.
Int J Nanomedicine ; 7: 5327-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071394

RESUMO

Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.


Assuntos
Plaquetas/efeitos dos fármacos , Dipiridamol/administração & dosagem , Stents Farmacológicos , Ácido Láctico/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Poliésteres/química , Ácido Poliglicólico/química , Materiais Biocompatíveis/síntese química , Plaquetas/citologia , Plaquetas/fisiologia , Células Cultivadas , Cristalização/métodos , Dipiridamol/química , Humanos , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Desenho de Prótese , Resultado do Tratamento
8.
J Biomater Sci Polym Ed ; 20(13): 1831-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19793442

RESUMO

This work was aimed at the study of some physical properties of two current light-cured dental resin composites, Rok (hybrid) and Ice (nanohydrid). As filler they both contain strontium aluminosilicate particles, however, with different size distribution, 40 nm-2.5 mum for Rok and 10 nm-1 mum for Ice. The resin matrix of Rok consists of UDMA, that of Ice of UDMA, Bis-EMA and TEGDMA. Degree of conversion was determined by FT-IR analysis. The flexural strength and modulus were measured using a three-point bending set-up according to the ISO-4049 specification. Sorption, solubility and volumetric change were measured after storage of composites in water or ethanol/water (75 vol%) for 1 day, 7 or 30 days. Thermogravimetric analysis was performed in air and nitrogen atmosphere from 30 to 700 degrees C. Surface roughness and morphology of the composites was studied by atomic force microscopy (AFM). The degree of conversion was found to be 56.9% for Rok and 61.0% for Ice. The flexural strength of Rok does not significantly differ from that of Ice, while the flexural modulus of Rok is higher than that of Ice. The flexural strengths of Rok and Ice did not show any significant change after immersion in water or ethanol solution for 30 days. The flexural modulus of Rok and Ice did not show any significant change either after immersion in water for 30 days, while it decreased significantly, even after 1 day immersion, in ethanol solution. Ice sorbed a higher amount of water and ethanol solution than Rok and showed a higher volume increase. Thermogravimetric analysis showed that Rok contains about 80 wt% inorganic filler and Ice about 75 wt%.


Assuntos
Resinas Compostas/química , Materiais Dentários/química , Nanoestruturas/química , Silicatos de Alumínio/química , Lâmpadas de Polimerização Dentária , Microscopia de Força Atômica , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA