Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(33): 37595-37607, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969637

RESUMO

As a ubiquitous family of enzymes with high performance in converting carbon dioxide (CO2) into bicarbonate, carbonic anhydrases (CAs) sparked enormous attention for carbon capture. Nevertheless, the high cost and operational instability of CAs hamper their practical relevance, and the utility of CAs is mainly limited to aqueous applications where CO2-to-bicarbonate conversion is possible. Taking advantage of the chemical motif that endows CA-like active sites (metal-coordinated histidine), here we introduce a new line of high-performance gas separation membranes with CO2-philic behavior. We first self-assembled a histidine-based bolaamphiphile (His-Bola) molecule in the aqueous phase and coordinated the resulting entities with divalent zinc. Optimizing the supramolecular synthesis conditions ensured that the resultant nanoparticles (His-NPs) exhibit high CO2 affinity and catalytic activity. We then exploited the His-NPs as nanofillers to enhance the separation performance of Pebax MH 1657. The hydrogen-bonding interactions allowed the dispersion of His-NPs within the polymer matrix uniformly, as confirmed by microscopic, spectroscopic, and thermal analyses. The imidazole and amine functionalities of His-NPs enhanced the solubility of CO2 molecules in the polymer matrix. The CA-mimic active sites of His-NPs nanozymes, on the other hand, catalyzed the reversible hydration of CO2 molecules in humid conditions, facilitating their transport across the membranes. The resulting nanocomposite membranes displayed excellent CO2 separation performance, with a high level of stability. At a filling ratio as low as 3 wt %, we achieved a CO2 permeability of >145 Barrer and a CO2/N2 selectivity of >95 with retained performance under humid continuous gas feeds. The bio-inspired approach presented in this work offers a promising platform for designing durable and highly selective CO2 capture membranes.


Assuntos
Anidrases Carbônicas , Bicarbonatos , Dióxido de Carbono/química , Anidrases Carbônicas/química , Histidina , Polímeros
2.
J Mater Chem B ; 8(42): 9668-9678, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33000843

RESUMO

Biomass-derived nanocarbons (BNCs) have attracted significant research interests due to their promising economic and environmental benefits. Following their extensive uses in physical and chemical research domains, BNCs are now growing in biological applications. However, their practical biological applications are still in their infancy, requiring critical evaluations and strategic directions, which are provided in this review. The carbonization of biomass sources and major types of BNCs are introduced, encompassing carbon nanodots, nanofibres, nanotubes, and graphenes. Next, essential biological uses of BNCs, antibacterial/antibiofilm materials (nanofibres and nanodots) and bioimaging agents (predominantly nanodots), are summarized. Furthermore, the future potential of BNCs, for designing wound dressing/healing materials, water and air disinfection platforms, and microbial electrochemical systems, is discussed. We reach the conclusion that a crucial challenge is the structural control of BNCs. Furthermore, a key knowledge gap for realizing practical biological applications is the lack of systematic comparisons of BNCs with nanocarbons of synthetic origin in the current literature. Although we did not attempt to perform an exhaustive literature survey, the evaluation of the existing results indicates that BNCs are promising as easily accessible materials for various biomedically and environmentally relevant applications.


Assuntos
Carbono/química , Nanoestruturas/química , Animais , Antibacterianos/química , Biomassa , Humanos , Nanotecnologia/métodos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Plantas/química
3.
Sci Adv ; 6(17): eaaz9184, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494655

RESUMO

Membranes for organic solvent nanofiltration (OSN) or solvent-resistant nanofiltration (SRNF) offer unprecedented opportunities for highly efficient and cost-competitive solvent recovery in the pharmaceutical industry. Here, we describe small-flake graphene oxide (SFGO) membranes for high-performance OSN applications. Our strategy exploits lateral dimension control to engineer shorter and less tortuous transport pathways for solvent molecules. By using La3+ as a cross-linker and spacer for intercalation, the SFGO membrane selective layer was stabilized, and size-dependent ultrafast selective molecular transport was achieved. The methanol permeance was up to 2.9-fold higher than its large-flake GO (LFGO) counterpart, with high selectivity toward three organic dyes. More importantly, the SFGO-La3+ membrane demonstrated robust stability for at least 24 hours under hydrodynamic stresses that are representative of realistic OSN operating conditions. These desirable attributes stem from the La3+ cross-linking, which forms uniquely strong coordination bonds with oxygen-containing functional groups of SFGO. Other cations were found to be ineffective.

4.
Membranes (Basel) ; 10(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325765

RESUMO

Membrane-based air separation (O2/N2) is of great importance owing to its energy efficiency as compared to conventional processes. Currently, dense polymeric membranes serve as the main pillar of industrial processes used for the generation of O2- and N2-enriched gas. However, conventional polymeric membranes often fail to meet the selectivity needs owing to the similarity in the effective diameters of O2 and N2 gases. Meanwhile, mixed-matrix membranes (MMMs) are convenient to produce high-performance membranes while keeping the advantages of polymeric materials. Here, we propose a novel MMM for O2/N2 separation, which is composed of Matrimid® 5218 (Matrimid) as the matrix, cobalt(II) phthalocyanine microparticles (CoPCMPs) as the filler, and Pluronic® F-127 (Pluronic) as the compatibilizer. By the incorporation of CoPCMPs to Matrimid, without Pluronic, interfacial defects were formed. Pluronic-treated CoPCMPs, on the other hand, enhanced O2 permeability and O2/N2 selectivity by 64% and 34%, respectively. We explain the enhancement achieved with the increase of both O2 diffusivity and O2/N2 solubility selectivity.

5.
Adv Mater ; 32(5): e1902387, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31304998

RESUMO

1D supercapacitors (SCs) have emerged as promising candidates to power emerging electronics in recent years because of their unique advantages in energy storage and mechanical flexibility. There are four main research fronts in the development of 1D SCs: 1) enhancing mechanical characteristics, 2) achieving superior electrochemical performance, 3) enabling multiple device integration, and 4) demonstrating multifunctionality. Here, a brief history of 1D SCs is presented and significant research achievements regarding the four fronts identified as the main pillars of the development of 1D SCs are highlighted. The current challenges of the fabrication and utilization of 1D SCs are critically examined and potential solutions are analyzed. Plus, the performance inconsistencies arising from the improper use and extreme diversity of performance evaluation and reporting methods are highlighted. Beyond, perspectives on future efforts are provided and goals regarding the four research fronts are set, to further push 1D SCs toward practical applications. The development of 1D SCs is summarized here, with existing obstacles diagnosed, corresponding solutions proposed, and future directions indicated accordingly.

6.
ACS Appl Mater Interfaces ; 11(27): 24018-24026, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251015

RESUMO

In this study, we report an interdisciplinary and novel strategy toward biofilm engineering for the development of a biofilm-templated heteroatom-doped catalytic system through bioreduction and biofilm matrix-facilitated immobilization of the in situ-formed catalytic nanoparticles followed by controlled pyrolysis. We showed that (i) even under room temperature and bulk aerobic conditions, Shewanella oneidensis MR-1 biofilms reduced Pd(II) to form Pd(0) nanocrystals (∼10 to 20 nm) that were immobilized in the biofilm matrix and in cellular membranes, (ii) the MR-1 biofilms with the immobilized Pd(0) nanocrystals exhibited nanocatalytic activity, (iii) exposure to Pd(II) greatly increased the rate of cell detachment from the biofilm and posed a risk of biofilm dispersal, (iv) controlled pyrolysis (carbonization) of the biofilm led to the formation of a stable heteroatom-doped carbon-palladium (C-Pd) nanocomposite catalyst, and (v) the biofilm-templated C-Pd nanocomposite catalyst exhibited a high Cr(VI) reduction activity and maintained a high reduction rate over multiple catalytic cycles. Considering that bacteria are capable of synthesizing a wide range of metal and metalloid nanoparticles, the biofilm-templated approach for the fabrication of the catalytic C-Pd nanocomposite we have demonstrated here should prove to be widely applicable for the production of different nanocomposites that are of importance to various environmental applications.

7.
Nanoscale ; 11(20): 9819-9839, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31080989

RESUMO

Water disinfection practices are critical for supplying safe drinking water. Existing water disinfection methods come with various drawbacks, calling for alternative or complementary solutions. Nanocarbon materials (NCMs) offer unique advantages for water disinfection owing to their high antimicrobial activity, often low environmental/human toxicity, and tunable physicochemical properties. Nevertheless, it is a challenge to assess the research progress made so far due to the structure and property diversity in NCMs as well as their different targeted applications. Because of these, here we provide a broad outline of this emerging field in three parts. First, we introduce the antimicrobial activities of the different types of NCMs, including fullerenes, nanodiamonds, carbon (nano)dots, carbon nanotubes, and graphene-family materials. Next, we discuss the current status in applying these NCMs for different water disinfection problems, especially as hydrogel filters, filtration membranes, recyclable aggregates, and electrochemical devices. We also introduce the use of NCMs in photocatalysts for photocatalytic water disinfection. Lastly, we put forward the key hurdles of the field that hamper the realization of the practical applications and propose possible directions for future investigations to address those. We hope that this minireview will encourage researchers to tackle these challenges and innovate NCM-based water disinfection platforms in the near future.


Assuntos
Anti-Infecciosos/química , Nanotubos de Carbono/química , Purificação da Água/métodos , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Catálise , Desinfecção , Fulerenos/química , Grafite/química , Grafite/farmacologia
8.
J Colloid Interface Sci ; 535: 149-158, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292105

RESUMO

Graphene hydrogels hold great potential for the disinfection of bacteria-contaminated water. However, the intrinsic antibacterial activity of graphene hydrogels is not satisfactory, and the incorporation of other antibacterial agents often results in their unwanted releases. Here, we present a new strategy to improve the antibacterial activities of graphene hydrogels. We first synthesized a new pi-conjugated molecule containing five aromatic rings and two side-linked quaternary ammonium (QA) groups, denoted as piQA. Next, we fabricated composite gravity filters by assembling piQA with reduced graphene oxide (rGO) hydrogel. The rGO hydrogel helps to form a sponge-like physical sieve, contributes to the overall antibacterial activity, and provides abundant pi-rich surfaces. The large aromatic cores of piQA allow the formation of collectively strong pi-pi interactions with rGO, resulting in a high piQA mass loading of ∼31 wt%. Due to the sieving effect of rGO hydrogel and the synergistic antibacterial activity of rGO and piQA, the filters prepared based on piQA-rGO assemblies can remove over 99.5% of Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) cells with a high-water treatment capacity of 10 L g-1. Furthermore, the piQA-rGO assemblies show low toxicity towards two different mammalian cell lines (L929 and macrophages), and the release of piQA is also negligible. Overall, the new piQA-rGO assembly demonstrates high potential for water disinfection applications.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Compostos de Amônio Quaternário/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Grafite/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Propriedades de Superfície , Microbiologia da Água , Poluição da Água , Abastecimento de Água
9.
Chem Rev ; 118(18): 8655-8769, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30136837

RESUMO

Biogas is an increasingly attractive renewable resource, envisioned to secure future energy demands and help curb global climate change. To capitalize on this resource, membrane processes and state-of-the-art membranes must efficiently recover methane (CH4) from biogas by separating carbon dioxide (CO2). Composite (a.k.a. mixed-matrix) membranes, prepared from common polymers and rationally selected/engineered fillers, are highly promising for this application. This review comprehensively examines filler materials that are capable of enhancing the CO2/CH4 separation performance of polymeric membranes. Specifically, we highlight novel synthetic strategies for engineering filler materials to develop high-performance composite membranes. Besides, as the matrix components (polymers) of composite membranes largely dictate the overall gas separation performances, we introduce a new empirical metric, the "Filler Enhancement Index" ( Findex), to aid researchers in assessing the effectiveness of the fillers from a big data perspective. The Findex systematically decouples the effect of polymer matrices and critically evaluates both conventional and emerging fillers to map out a future direction for next-generation (bio)gas separation membranes. Beyond biogas separation, this review is of relevance to a broader community with interests in composite membranes for other gas separation processes, as well as water treatment applications.

10.
Biomater Sci ; 6(4): 766-773, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29387845

RESUMO

Graphene materials (GMs) exhibit attractive antimicrobial activities promising for biomedical and environmental applications. However, we still lack full control over their behaviour and performance mainly due to the complications arising from the coexistence and interplay of multiple factors. Therefore, in this minireview, we attempt to illustrate the structure-property-activity relationships of GMs' antimicrobial activity. We first examine the chemical/physical complexity of GMs focusing on five aspects of their materials characteristics: (i) chemical composition, (ii) impurities and imperfections, (iii) lateral dimension, (iv) self-association (e.g., restacking), and (v) composite/hybrid formation. Next, we briefly summarise the current understanding of their antimicrobial mechanisms. Then, we assign the outlined materials characteristics of GMs to the proposed antimicrobial mechanisms. Lastly, we share our vision regarding the future of research and development in this fast-emerging field.


Assuntos
Anti-Infecciosos/química , Grafite/química , Nanoestruturas/química , Animais , Anti-Infecciosos/farmacologia , Grafite/farmacologia , Humanos
11.
Polymers (Basel) ; 10(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30966593

RESUMO

Based on simple mixing and polymerization of a hydroxyl-containing derivative of perylene bisimide (PBI) and l-malic acid, here, we demonstrate a new type of dye-polymer conjugate, PBI-poly(α,ß-malic acid) (PBI⁻PMA). Benefiting from the excellent water-solubility of weak polyanionic PMA structure and the high fluorescence of PBI, the PBI-PMA conjugates readily dissolve in water, displaying strong pH-dependent fluorescence with the highest intensity at pH 6. Due to the excellent biocompatibility of PMA, those conjugates showed low cytotoxicity on L929 cells. Using L929 and HeLa cells, we also confirmed that the PBI-PMA-labeled cells display intense fluorescence. Overall, the PBI-PMA conjugate demonstrates high potential as a cell labeling agent with its synthesis ease, good solubility in aqueous medium, low cytotoxicity, and high fluorescence.

12.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28804931

RESUMO

Metal oxides of earth-abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy-conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three-stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N-doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5 Co0.5 Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec-1 and an overpotential of 257 mV for 10 mA cm-2 and superior ORR activity with a large limiting current density of -5.25 mA cm-2 at 0.6 V. A fabricated Zn-air battery delivers a specific capacity of 756 mA h gZn-1 (corresponding to an energy density of 904 W h kgZn-1 ), a peak power density of 86 mW cm-2 and can be cycled over 120 h at 10 mA cm-2 . Other two amorphous bimetallic, Ni0.4 Fe0.6 Ox and Ni0.33 Co0.67 Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.

13.
ACS Appl Mater Interfaces ; 9(22): 18440-18449, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28513136

RESUMO

Pneumonia is the major cause of death in children under five, particularly in developing countries. Antibiotics such as amoxicillin greatly help in mitigating this problem. However, there is a lack of an infant/toddler-friendly formulation for countries with limited clean water orr electricity. Here, we report the development of a shear-thinning hydrogel system for the oral delivery of amoxicillin to infant/toddler patients, without the need of clean water and refrigeration. The hydrogel formulation consists of metolose (hydroxypropyl methylcellulose) and amoxicillin. It preserves the structural integrity of antibiotics and their antibacterial activity over 12 weeks at room temperature. Pharmacokinetic profiling of mice reveals that the hydrogel formulation increases the bioavailability of drugs by ∼18% compared to that with aqueous amoxicillin formulation. More importantly, oral gavage of this formulation in a mouse model of secondary pneumococcal pneumonia significantly ameliorates inflammatory infiltration and tissue damage in lungs, with a 10-fold reduction in bacterial counts compared to those in untreated ones. Given the remarkable antibacterial efficacy as well as the use of FDA-regulated ingredients (metolose and amoxicillin), the hydrogel formulation holds great promise for rapid clinical translation.


Assuntos
Amoxicilina/química , Antibacterianos/química , Animais , Humanos , Hidrogéis , Lactente , Camundongos , Pneumonia Pneumocócica , Refrigeração
14.
Nanoscale ; 9(13): 4401-4408, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28191583

RESUMO

Electrochemical splitting of water to produce oxygen (O2) and hydrogen (H2) through a cathodic hydrogen evolution reaction (HER) and an anodic oxygen evolution reaction (OER) is a promising green approach for sustainable energy supply. Here we demonstrated a porous nickel-copper phosphide (NiCuP) nano-foam as a bifunctional electrocatalyst for highly efficient total water splitting. Prepared from a bubble-templated electrodeposition method and subsequent low-temperature phosphidization, NiCuP has a hierarchical pore structure with a large electrochemical active surface area. To reach a high current density of 50 mA cm-2, it requires merely 146 and 300 mV with small Tafel slopes of 47 and 49 mV dec-1 for HER and OER, respectively. The total water splitting test using NiCuP as both the anode and cathode showed nearly 100% Faradic efficiency and surpassed the performances of electrode pairs using commercial Pt/C and IrO2 catalysts under our test conditions. The high activity of NiCuP can be attributed to (1) the conductive NiCu substrates, (2) a large electrochemically active surface area together with a combination of pores of different sizes, and (3) the formation of active Ni/Cu oxides/hydroxides while keeping a portion of more conductive Ni/Cu phosphides in the nano-foam. We expect the current catalyst to enable the manufacturing of affordable water splitting systems.

15.
Nanoscale ; 8(39): 17181-17189, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27722381

RESUMO

Carbon-based nanomaterials have a great potential as novel antibacterial agents; however, their interactions with bacteria are not fully understood. This study demonstrates that the antibacterial activity of graphene oxide (GO) depends on the physiological state of cells for both Gram-negative and -positive bacteria. GO susceptibility of bacteria is the highest in the exponential growth phase, which are in growing physiology, and stationary-phase (non-growing) cells are quite resistant against GO. Importantly, the order of GO susceptibility of E. coli with respect to the growth phases (exponential ≫ decline > stationary) correlates well with the changes in the envelope ultrastructures of the cells. Our findings are not only fundamentally important but also particularly critical for practical antimicrobial applications of carbon-based nanomaterials.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Aderência Bacteriana , Escherichia coli/fisiologia , Óxidos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
16.
Nanoscale ; 8(40): 17705-17713, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722714

RESUMO

The chirality-selective synthesis of relatively large (diameter > 1 nm) single-walled carbon nanotubes (SWCNTs) is of great interest for a variety of practical applications, but only a few catalysts are available so far. Previous studies suggested that S (compounds) can enhance the chirality-selectivity of Co catalysts in SWCNT synthesis, however, the mechanism behind is not fully understood, and no tailorable methodology has yet been developed. Here, we demonstrate a facile approach to achieve the chirality-selective synthesis of SWCNTs by the sulfidation-based poisoning of silica-supported Co catalysts using a mixture of H2S and H2. The UV-vis-NIR, photoluminescence, and Raman spectroscopy results together show that the resulting SWCNTs have a narrow diameter distribution of around 1.2 nm, and (9,8) nanotubes have an abundance of ∼38% among the semiconducting species. More importantly, the carbon yield achieved by the sulfided catalyst (2.5 wt%) is similar to that of the nonsulfided one (2.7 wt%). The characterization of the catalysts by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray fluorescence, and H2 temperature-programmed reduction shows that the sulfidation leads to the formation of Co9S8 nanoparticles. However, Co9S8 nanoparticles are reduced back to regenerate metallic Co nanoparticles during the synthesis of SWCNTs, which maintain a high carbon yield. In this process, Co9S8 nanoparticles seemingly intermediate the production of Co nanoparticles with narrow size distribution. Due to the fact that the poisoning step improves the quality of the end-product rather than hampering the growth process, we have coined the process developed as "smart poisoning". This study not only reveals the mechanism behind the beneficial role of S in the selective synthesis of relatively large SWCNTs but also presents a promising method to create chirality-selective catalysts with high activity for scalable synthesis.

17.
Ultrason Sonochem ; 31: 481-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26964975

RESUMO

Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.

18.
Small ; 12(7): 951-62, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26707949

RESUMO

Graphene oxide (GO) is promising in the fight against pathogenic bacteria. However, the antibacterial activity of pristine GO is relatively low and concern over human cytotoxicity further limits its potential. This study demonstrates a general approach to address both issues. The developed approach synergistically combines the water shock treatment (i.e., a sudden decrease in environmental salinity) and the use of a biocompatible block copolymer (Pluronic F-127) as a synergist co-agent. Hypoosmotic stress induced by water shock makes gram-negative pathogens more susceptible to GO. Pluronic forms highly stable nanoassemblies with GO (Pluronic-GO) that can populate around bacterial envelopes favoring the interactions between GO and bacteria. The antibacterial activity of GO at a low concentration (50 µg mL(-1) ) increases from <30% to virtually complete killing (>99%) when complemented with water shock and Pluronic (5 mg mL(-1) ) at ≈2-2.5 h of exposure. Results suggest that the enhanced dispersion of GO and the osmotic pressure generated on bacterial envelopes by polymers together potentiate GO. Pluronic also significantly suppresses the toxicity of GO toward human fibroblast cells. Fundamentally, the results highlight the crucial role of physicochemical milieu in the antibacterial activity of GO. The demonstrated strategy has potentials for daily-life bacterial disinfection applications, as hypotonic Pluronic-GO mixture is both safe and effective.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Grafite/farmacologia , Poloxâmero/farmacologia , Água/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Grafite/toxicidade , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA