Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
RSC Adv ; 14(36): 25986-26001, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39161454

RESUMO

This review focuses on the deformation and poration of lipid vesicles caused by the interaction of anionic magnetite nanoparticles (MNPs). Effects of various factors, such as surface charge density, salt and sugar concentrations in buffer, membrane cholesterol content, polymer-grafted phospholipid, and membrane potential have been discussed for the interaction of MNPs with lipid vesicles. To quantify these effects on the vesicles, compactness, fraction of deformation and poration, dynamics of membrane permeation, and kinetics of membrane permeation have been critically evaluated. The review explores the potential advancements as well as future directions of the research field in the biomedical application of MNPs.

2.
PLoS One ; 19(6): e0304345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857287

RESUMO

Irreversible electroporation induces permanent permeabilization of lipid membranes of vesicles, resulting in vesicle rupture upon the application of a pulsed electric field. Electrofusion is a phenomenon wherein neighboring vesicles can be induced to fuse by exposing them to a pulsed electric field. We focus how the frequency of direct current (DC) pulses of electric field impacts rupture and electrofusion in cell-sized giant unilamellar vesicles (GUVs) prepared in a physiological buffer. The average time, probability, and kinetics of rupture and electrofusion in GUVs have been explored at frequency 500, 800, 1050, and 1250 Hz. The average time of rupture of many 'single GUVs' decreases with the increase in frequency, whereas electrofusion shows the opposite trend. At 500 Hz, the rupture probability stands at 0.45 ± 0.02, while the electrofusion probability is 0.71 ± 0.01. However, at 1250 Hz, the rupture probability increases to 0.69 ± 0.03, whereas the electrofusion probability decreases to 0.46 ± 0.03. Furthermore, when considering kinetics, at 500 Hz, the rate constant of rupture is (0.8 ± 0.1)×10-2 s-1, and the rate constant of fusion is (2.4 ± 0.1)×10-2 s-1. In contrast, at 1250 Hz, the rate constant of rupture is (2.3 ± 0.8)×10-2 s-1, and the rate constant of electrofusion is (1.0 ± 0.1)×10-2 s-1. These results are discussed by considering the electrical model of the lipid bilayer and the energy barrier of a prepore.


Assuntos
Eletroporação , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Cinética , Eletroporação/métodos , Probabilidade , Fusão de Membrana
3.
Phys Chem Chem Phys ; 26(7): 6107-6117, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299672

RESUMO

The pore edge tension (Γ) of a membrane closely intertwines with membrane stability and plays a vital role in the mechanisms that facilitate membrane resealing following pore formation caused by electrical and mechanical tensions. We have explored a straightforward procedure to determine Γ by fitting the inverse of the tension-dependent logarithm of the rate constant of rupture of giant unilamellar vesicles (GUVs) using the Arrhenius equation. The GUVs were prepared using a combination of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in a physiological environment. The effects of sugar concentration, membrane surface charge density, and membrane cholesterol concentration on Γ have been investigated. The values of Γ increase with sugar concentration in the physiological buffer, measuring 9.6 ± 0.3, 10.4 ± 0.1, and 16.2 ± 0.1 pN for 40, 100, and 300 mM, respectively. A higher concentration of anionic lipids (70 mol% of DOPG) significantly reduces Γ. An increasing trend of Γ with cholesterol content was observed; specifically, the values of Γ were 11.9 ± 0.9, 13.9 ± 0.7, and 16.2 ± 0.4 pN for 15, 29, and 40 mol% cholesterol, respectively. Thus, the presence of higher anionic lipids in the bilayer led to a decrease in membrane stability. In contrast, the presence of higher sugar concentrations in the buffer and increased cholesterol concentration in the membranes enhanced membrane stability.


Assuntos
Açúcares , Lipossomas Unilamelares , Fosfatidilcolinas , Cinética , Colesterol , Bicamadas Lipídicas
4.
Soft Matter ; 19(43): 8285-8304, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873600

RESUMO

This review provides an overview of the latest developments in both experimental and simulation techniques used to assess the bending rigidity of lipid membranes. It places special emphasis on experimental methods that utilize model vesicles to manipulate lipid compositions and other experimental parameters to determine the bending rigidity of the membrane. It also describes two commonly used simulation methods for estimating bending rigidity. The impact of various factors on membrane bending rigidity is summarized, including cholesterol, lipids, salt concentration, surface charge, membrane phase state, peptides, proteins, and polyethylene glycol. These factors are shown to influence the bending rigidity, contributing to a better understanding of the biophysical properties of membranes and their role in biological processes. Furthermore, the review discusses future directions and potential advancements in this research field, highlighting areas where further investigation is required.


Assuntos
Colesterol , Peptídeos , Membranas , Polietilenoglicóis , Bicamadas Lipídicas/química
5.
PLoS One ; 18(9): e0291496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699026

RESUMO

Living organisms maintain a resting membrane potential, which plays an important role in various biophysical and biological processes. In the context of medical applications, irreversible electroporation (IRE) is a non-thermal and minimally invasive technique that utilizes precisely controlled electric field pulses of micro- to millisecond durations to effectively ablate cancer and tumor cells. Previous studies on IRE-induced rupture of cell-mimetic giant unilamellar vesicles (GUVs) have primarily been conducted in the absence of membrane potentials. In this study, we investigated the electroporation of GUVs, including parameters such as the rate constant of rupture and the probability of rupture, in the presence of various negative membrane potentials. The membranes of GUVs were prepared using lipids and channel forming proteins. As the membrane potential increased from 0 to -90 mV, the rate constant of rupture showed a significant increase from (7.5 ± 1.6)×10-3 to (35.6 ± 5.5)×10-3 s-1. The corresponding probability of rupture also exhibited a notable increase from 0.40 ± 0.05 to 0.68 ± 0.05. To estimate the pore edge tension, the electric tension-dependent logarithm of the rate constant was fitted with the Arrhenius equation for different membrane potentials. The presence of membrane potential did not lead to any significant changes in the pore edge tension. The increase in electroporation is reasonably explained by the decrease in the prepore free energy barrier. The choice of buffer used in GUVs can significantly influence the kinetics of electroporation. This study provides valuable insights that can contribute to the application of electroporation techniques in the biomedical field.


Assuntos
Eletroporação , Lipossomas Unilamelares , Potenciais da Membrana , Terapia com Eletroporação , Biofísica
6.
Phys Chem Chem Phys ; 25(34): 23111-23124, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37602684

RESUMO

The membrane potential plays a significant role in various cellular processes while interacting with membrane active agents. So far, all the investigations of the interaction of nanoparticles (NPs) with lipid vesicles have been performed in the absence of membrane potential. In this study, the anionic magnetite NP-induced poration along with deformation of cell-mimetic giant unilamellar vesicles (GUVs) has been studied in the presence of various membrane potentials. Lipids 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and channel forming protein gramicidin A (GrA) are used to synthesize the DOPG/DOPC/GrA-GUVs. The static and dynamic nature of GUVs is investigated using phase contrast fluorescent microscopy. The presence of GrA in the membrane decreases the leakage constant of the encapsulating fluorescent probe (calcein) in the absence of membrane potential. With the increase of negative membrane potential, the leakage shifts from a single exponential to two exponential functions, obtaining two leakage constants. The leakage became faster at the initial stage, and at the final stage, it became slower with the increase in negative membrane potential. Both the fraction of poration and deformation increase with the increase of negative membrane potential. These results suggested that the membrane potential enhances the NP-induced poration along with the deformation of DOPG/DOPC/GrA-GUVs. The increase of the binding constant in the NPs with membrane potential is one of the important factors for increasing membrane permeation and vesicle deformation.


Assuntos
Corantes Fluorescentes , Nanopartículas , Potenciais da Membrana , Membranas , Glicerol , Gramicidina , Lipossomas Unilamelares
7.
PLoS One ; 18(7): e0289087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523403

RESUMO

The hydrophilic polymer polyethylene glycol-grafted phospholipid has been used extensively in the study of artificial vesicles, nanomedicine, and antimicrobial peptides/proteins. In this research, the effects of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)-2000] (abbreviated PEG-DOPE) on the deformation and poration of giant unilamellar vesicles (GUVs)-induced by anionic magnetite nanoparticles (NPs) have been investigated. For this, the size of the NPs used was 18 nm, and their concentration in the physiological solution was 2.00 µg/mL. GUVs were prepared using the natural swelling method comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PEG-DOPE. The mole% of PEG-DOPE in the membranes were 0, 2, and 5%. The degree of deformation of the GUVs was quantified by the parameter compactness (Com), which is 1.0 for the spherical-shaped GUVs. The value of Com increases with time during the interactions of NPs with GUVs for any concentration of PEG-DOPE, but the rate of increase is significantly influenced by the PEG-DOPE concentration in the membranes. The average compactness increases with the increase of PEG-DOPE%, and after 60 min of NPs interaction, the values of average compactness for 0, 2, and 5% PEG-DOPE were 1.19 ± 0.02, 1.26 ± 0.03 and 1.35 ± 0.05, respectively. The fraction of deformation (Frd) also increased with the increase of PEG-DOPE%, and at 60 min, the values of Frd for 0 and 5% PEG-DOPE were 0.47 ± 0.02 and 0.63 ± 0.02, respectively. The fraction of poration (Frp) increased with the increase of PEG-DOPE, and at 60 min, the values of Frp for 0 and 5% PEG-DOPE were 0.25 ± 0.02 and 0.48 ± 0.02, respectively. Hence, the presence of PEG-grafted phospholipid in the membranes greatly enhances the anionic magnetite NPs-induced deformation and poration of giant vesicles.


Assuntos
Nanopartículas de Magnetita , Fosfolipídeos , Polietilenoglicóis , Polímeros , Lipossomas Unilamelares , Fosfatidilcolinas
8.
Front Neurosci ; 17: 1084004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139532

RESUMO

Background: Based on published experimental evidence, a recent publication revealed an anomalous phenomenon in nerve conduction: for myelinated nerves the nerve conduction velocity (NCV) increases with stretch, which should have been the opposite according to existing concepts and theories since the diameter decreases on stretching. To resolve the anomaly, a new conduction mechanism for myelinated nerves was proposed based on physiological changes in the nodal region, introducing a new electrical resistance at the node. The earlier experimental measurements of NCV were performed on the ulnar nerve at different angles of flexion, focusing at the elbow region, but left some uncertainty for not reporting the lengths of nerve segments involved so that the magnitudes of stretch could not be estimated. Aims: The aim of the present study was to relate NCV of myelinated nerves with different magnitudes of stretch through careful measurements. Method: Essentially, we duplicated the earlier published NCV measurements on ulnar nerves at different angles of flexion but recording appropriate distances between nerve stimulation points on the skin carefully and assuming that the lengths of the underlying nerve segment undergoes the same percentages of changes as that on the skin outside. Results: We found that the percentage of nerve stretch across the elbow is directly proportional to the angle of flexion and that the percentage increase in NCV is directly proportional to the percentage increase in nerve stretch. Page's L Trend test also supported the above trends of changes through obtained p values. Discussion: Our experimental findings on myelinated nerves agree with those of some recent publications which measured changes in CV of single fibres, both myelinated and unmyelinated, on stretch. Analyzing all the observed results, we may infer that the new conduction mechanism based on the nodal resistance and proposed by the recent publication mentioned above is the most plausible one to explain the increase in CV with nerve stretch. Furthermore, interpreting the experimental results in the light of the new mechanism, we may suggest that the ulnar nerve at the forearm is always under a mild stretch, with slightly increased NCV of the myelinated nerves.

9.
RSC Adv ; 12(44): 28283-28294, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320506

RESUMO

We have investigated the effects of cholesterol on the deformation and poration of giant unilamellar vesicles (GUVs) induced by anionic magnetite nanoparticles (NPs). Negatively charged lipid, neutral lipid, and cholesterol were used to prepare the charged GUVs (surface charge density of membranes - 0.16 C m-2), while only neutral lipid and cholesterol were used to prepare the neutral GUVs. Cholesterol content varied from 0 to 40 mole% for preparing the biologically relevant membranes. The degree of deformation has been characterized by compactness, the value of which remains at 1.0 for spherical GUVs. The value of compactness increases with time for both membranes, but this increase depends on cholesterol content. The average compactness decreases with cholesterol content, and at 60 min, the values are 1.280 ± 0.002 and 1.131 ± 0.010 for 0 and 40 mole% cholesterol containing charged GUVs. The average compactness is relatively lower for neutral GUVs for the corresponding cholesterol. Membrane poration has been investigated by the leakage of calcein, which indicates a two-state transition model. The fraction of deformation is higher for charged GUVs than for neutral ones, while the fraction of poration shows the opposite result. Both the fractions decrease with cholesterol content.

10.
PLoS One ; 17(9): e0275478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174090

RESUMO

Sugar plays a vital role in the structural and functional characteristics of cells. Hence, the interaction of NPs with cell membranes in the presence of sugar concentrations is important for medicinal and pharmacological innovations. This study integrated three tools: giant unilamellar vesicles (GUVs), anionic magnetite nanoparticles (NPs), and sugar concentrations, to understand a simplified mechanism for interactions between the vesicle membranes and NPs under various sugar concentrations. We focused on changing the sugar concentration in aqueous solution; more precisely, sucrose inside the GUVs and glucose outside with equal osmolarity. 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used to prepare the charged membranes of 40mole%DOPG/60mole%DOPC-GUVs, whereas only DOPC was used to prepare the neutral membranes. Phase contrast fluorescence microscopy shows that the adherence of 18 nm magnetite NPs with anionic charge depends on the sugar concentration. The alterations of GUVs induced by the NPs are characterized in terms of i) vesicle compactness, ii) deformation, and iii) membrane poration. The presence of sugar provides additional structural stability to the GUVs and reduces the effects of the NPs with respect to these parameters; more precisely, the higher the sugar concentration, the smaller the alteration induced by the NPs. The differences in NPs effects are explained by the change in the type of interaction between sugar molecules and lipid membranes, namely enthalpy and entropy-driven interaction, respectively. In addition, such alterations are influenced by the surface charge density of the lipid bilayer. The surface pressure of membranes due to the adsorption of NPs is responsible for inducing the poration in membranes. The differences in deformation and poration in charged and neutral GUVs under various sugar concentrations are discussed based on the structure of the head of lipid molecules.


Assuntos
Nanopartículas de Magnetita , Açúcares , Ânions , Vesícula , Óxido Ferroso-Férrico , Glucose , Glicerol , Humanos , Bicamadas Lipídicas , Sódio , Sacarose , Lipossomas Unilamelares
11.
Eur Biophys J ; 51(4-5): 401-412, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35716178

RESUMO

We investigated the effects of sugar concentration on the electroporation, size distribution and average size of giant unilamellar vesicles (GUVs). GUVs were prepared from 40 mol% of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 60 mol% of 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. Pulsed electric field was applied to the 40%DOPG/60%DOPC-GUVs and it induced lateral electric tension (σc) in the membranes of vesicles. The σc-induced probability of rupture (Ppore) and the rate constant of rupture (kp) of GUVs under the sugar concentration, c = 40, 100 and 300 mM, were determined. Both the Ppore and kp increased with the increase of σc, but higher tension was required to generate the same values of Ppore and kp with increasing c. We also investigated average sizes of GUVs from the size distribution of vesicles under various sugar concentrations. With the increase of c, the peak of the size distribution histograms shifted to the region of smaller vesicles. The average size decreased 1.6-fold when c increased from 10 to 300 mM. These investigations help to understand various biomedical, biophysical, and biochemical processes in vesicles and cells. Electroporation, size distribution and average size of charged GUVs were investigated under various sugar concentrations. The sugar concentration influences the electroporation of vesicles and the average size of GUVs.


Assuntos
Fosfatidilcolinas , Lipossomas Unilamelares , Eletricidade , Eletroporação , Açúcares
12.
Eur Phys J E Soft Matter ; 45(6): 55, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748998

RESUMO

The effects of the hydrocarbon chain of lipids on the size distribution of giant unilamellar vesicles (GUVs), kinetics of average size, bending modulus, and elastic modulus of membranes have been investigated. 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Cis) PC (DOPC)), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Cis) PC), and 1,2-ditridecanoyl-sn-glycerol-3-phosphocholine (13:0 PC (DTPC)) lipids were considered. The number of hydrocarbons in a chain of the corresponding lipid was 18, 16, and 13. GUVs were prepared using the natural swelling method under incubation times of 20, 40, 60, 90, 120, and 180 min. The size distribution of vesicles was fitted using the lognormal distribution. The average sizes of DOPC, 16:1 (Δ9-Cis) PC, and DTPC-GUVs increased with the incubation time until 120 min, and then remained steady at 16.7 ± 0.2, 15.2 ± 0.4 and 12.0 ± 0.3 µm for the corresponding lipids. The average size at equilibrium state increased with the number of hydrocarbons. The incubation time-dependent average size was fitted with an exponential growth equation, and then the kinetic constants of 0.028 ± 0.004, 0.036 ± 0.007, and 0.083 ± 0.009 min-1 for DOPC, 16:1 (Δ9-Cis) PC, and DTPC-GUVs, respectively, were obtained. The equilibrium size distribution was fitted by the theoretical equation, and the bending modulus for DOPC, 16:1 (Δ9-Cis) PC, and DTPC membranes were 19.5 ± 0.2, 18.5 ± 0.1 and 14.3 ± 0.1 kBT, respectively. The bending modulus increased with the number of hydrocarbons. The elastic modulus of these membranes was 261 mN/m with a 4% fluctuation. The correlation between the average size and the square root of the bending modulus was supported by theoretical analysis.


Assuntos
Hidrocarbonetos , Lipossomas Unilamelares , Módulo de Elasticidade , Cinética , Lipídeos , Fosfatidilcolinas
13.
PLoS One ; 17(1): e0262555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025973

RESUMO

Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.


Assuntos
Colesterol/química , Eletroporação/métodos , Lipossomas Unilamelares/química , Eletricidade , Membranas , Pressão Osmótica/fisiologia , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Propriedades de Superfície , Lipossomas Unilamelares/metabolismo
14.
PLoS One ; 17(1): e0263119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089965

RESUMO

The influence of cholesterol fraction in the membranes of giant unilamellar vesicles (GUVs) on their size distributions and bending moduli has been investigated. The membranes of GUVs were synthesized by a mixture of two elements: electrically neutral lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol and also a mixture of three elements: electrically charged lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), DOPC and cholesterol. The size distributions of GUVs have been presented by a set of histograms. The classical lognormal distribution is well fitted to the histograms, from where the average size of vesicle is obtained. The increase of cholesterol content in the membranes of GUVs increases the average size of vesicles in the population. Using the framework of Helmholtz free energy of the system, the theory developed by us is extended to explain the experimental results. The theory determines the influence of cholesterol on the bending modulus of membranes from the fitting of the proper histograms. The increase of cholesterol in GUVs increases both the average size of vesicles in population and the bending modulus of membranes.


Assuntos
Colesterol/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Lipossomas Unilamelares/química
15.
PLoS One ; 16(7): e0254930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324548

RESUMO

A new purification technique is developed for obtaining distribution of giant unilamellar vesicles (GUVs) within a specific range of sizes using dual filtration. The GUVs were prepared using well known natural swelling method. For filtration, different combinations of polycarbonate membranes were implemented in filter holders. In our experiment, the combinations of membranes were selected with corresponding pore sizes-(i) 12 and 10 µm, (ii) 12 and 8 µm, and (iii) 10 and 8 µm. By these filtration arrangements, obtained GUVs size distribution were in the ranges of 6-26 µm, 5-38 µm and 5-30 µm, respectively. In comparison, the size distribution range was much higher for single filtration technique, for example, 6-59 µm GUVs found for a membrane with 12 µm pores. Using this technique, the water-soluble fluorescent probe, calcein, can be removed from the suspension of GUVs successfully. The size distributions were analyzed with lognormal distribution. The skewness became smaller (narrow size distribution) when a dual filtration was used instead of single filtration. The mode of the size distribution obtained in dual filtration was also smaller to that of single filtration. By continuing this process of purification for a second time, the GUVs size distribution became even narrower. After using an extra filtration with dual filtration, two different size distributions of GUVs were obtained at a time. This experimental observation suggests that different size specific distributions of GUVs can be obtained easily, even if GUVs are prepared by different other methods.


Assuntos
Filtração , Lipossomas Unilamelares , Fluoresceínas , Fosfatidilcolinas
16.
PLoS One ; 16(5): e0251690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989363

RESUMO

Irreversible electroporation (IRE) is a nonthermal tumor/cell ablation technique in which a series of high-voltage short pulses are used. As a new approach, we aimed to investigate the rupture of giant unilamellar vesicles (GUVs) using the IRE technique under different osmotic pressures (Π), and estimated the membrane tension due to Π. Two categories of GUVs were used in this study. One was prepared with a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol (chol) for obtaining more biological relevance while other with a mixture of DOPG and DOPC, with specific molar ratios. We determined the rate constant (kp) of rupture of DOPG/DOPC/chol (46/39/15)-GUVs and DOPG/DOPC (40/60)-GUVs induced by constant electric tension (σc) under different Π. The σc dependent kp values were fitted with a theoretical equation, and the corresponding membrane tension (σoseq) at swelling equilibrium under Π was estimated. The estimated membrane tension agreed well with the theoretical calculation within the experimental error. Interestingly, the values of σoseq were almost same for both types of synthesized GUVs under same osmotic pressure. We also examined the sucrose leakage, due to large osmotic pressure-induced pore formation, from the inside of DOPG/DOPC/chol(46/39/15)-GUVs. The estimated membrane tension due to large Π at which sucrose leaked out was very similar to the electric tension at which GUVs were ruptured without Π. We explained the σc and Π induced pore formation in the lipid membranes of GUVs.


Assuntos
Eletroporação , Pressão Osmótica , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Lipossomas Unilamelares/química
17.
Eur Phys J E Soft Matter ; 44(4): 62, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909146

RESUMO

We have analyzed the purification of charged giant unilamellar vesicles (GUVs) prepared in a buffer containing various concentrations of salt using their size distribution. The membranes of GUVs were synthesized by a mixture of dioleoylphosphocholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) lipids. The DOPG mole fractions (X) in the membranes of GUVs were 0.10, 0.25, 0.40, 0.55, 0.70, 0.90 in a physiological buffer containing 162 mM salt. In addition, for a fixed value of X the concentrations of salt (C) in the buffer were 12, 62, 112, 162, 212, 312, 362 mM. The size distribution histograms of experimentally investigated unpurified and purified GUVs were fitted with the lognormal distribution and obtained the multiplication factor [Formula: see text] for mean ([Formula: see text]) and [Formula: see text] for standard deviation ([Formula: see text]) of the lognormal distribution. The key parameters [Formula: see text] and [Formula: see text] were responsible for changing the average size and size distribution of unpurified GUVs to purified ones. The theoretically fitting equation of experimentally obtained X- and C-dependent values of [Formula: see text] and [Formula: see text] provided the calibration equation for estimating the average size of purified GUVs theoretically for any values of X and C. The estimated size of purified GUVs increased with the increase in electrostatic effect (i.e., increase in vesicle surface charge density or decrease in salt concentration in buffer). The estimated size of purified GUVs varied with X and C, which supported the previous report qualitatively. These investigations might be helpful in the field of cell/chemical biology for understanding the process of purification of vesicles/cells investigated by any other techniques.

18.
RSC Adv ; 11(47): 29598-29619, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479542

RESUMO

External tension in membranes plays a vital role in numerous physiological and physicochemical phenomena. In this review, recent developments in the constant electric- and mechanical-tension-induced rupture of giant unilamellar vesicles (GUVs) are considered. We summarize the results relating to the kinetics of GUV rupture as a function of membrane surface charge, ions in the bathing solution, lipid composition, cholesterol content in the membrane, and osmotic pressure. The mechanical stability and line tension of the membrane under these conditions are discussed. The membrane tension due to osmotic pressure and the critical tension of rupture for various membrane compositions are also discussed. The results and their analysis provide a biophysical description of the kinetics of rupture, along with insight into biological processes. Future directions and possible developments in this research area are included.

19.
Eur Biophys J ; 50(1): 99-106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33245397

RESUMO

Irreversible electroporation (IRE) is a technique for the disruption of localized cells or vesicles by a series of short and high-frequency electric pulses which has been used for tissue ablation and treatment in certain diseases. It is well reported that IRE induces lateral tension in the membranes of giant unilamellar vesicles (GUVs). The GUVs are prepared by a mixture of anionic lipid dioleoylphosphatidylglycerol (DOPG) and neutral lipid dioleoylphosphatidylcholine (DOPC) using the natural swelling method. Here the influence of DOPG mole fraction, XDOPG, on the critical tension of electroporation in GUVs has been investigated in sodium chloride-containing PIPES buffer. The critical tension decreases from 9.0 ± 0.3 to 6.0 ± 0.2 mN/m with the increase of XDOPG from 0.0 to 0.60 in the membranes of GUVs. Hence an increase in XDOPG greatly decreases the mechanical stability of membranes. We develop a theoretical equation that fits the XDOPG dependent normalized critical tension, and obtain a binding constant for the lipid-ion interaction of 0.75 M-1. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in XDOPG, is the main factor explaining the decrease in critical tension of electroporation in vesicles.


Assuntos
Eletroporação , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Eletricidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA