Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Subcell Biochem ; 104: 549-563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963500

RESUMO

Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.


Assuntos
Microscopia Crioeletrônica , Fímbrias Bacterianas , Sistemas de Secreção Tipo II , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/fisiologia , Microscopia Crioeletrônica/métodos , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética
2.
Nat Commun ; 15(1): 3600, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678029

RESUMO

Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.


Assuntos
COVID-19 , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , SARS-CoV-2 , Streptococcus pyogenes , Animais , Humanos , Camundongos , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Fagocitose , Engenharia de Proteínas/métodos , SARS-CoV-2/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia
3.
Comput Struct Biotechnol J ; 23: 1387-1396, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596314

RESUMO

Gene activity is tightly controlled by reversible chemical modifications called epigenetic marks, which are of various types and modulate gene accessibility without affecting the DNA sequence. Despite an increasing body of evidence demonstrating the role of oxidative-type modifications of histones in gene expression regulation, there remains a complete absence of structural data at the atomistic level to understand the molecular mechanisms behind their regulatory action. Owing to µs time-scale MD simulations and protein communication networks analysis, we describe the impact of histone H3 hyperoxidation (i.e., S-sulfonylation) on the nucleosome core particle dynamics. Our results reveal the atomic-scale details of the intrinsic structural networks within the canonical histone core and their perturbation by hyperoxidation of the histone H3 C110. We show that this modification involves local rearrangements of the communication networks and destabilizes the dyad, and that one modification is enough to induce a maximal structural signature. Our results suggest that cysteine hyperoxidation in the nucleosome core particle might favor its disassembly.

4.
J Chem Inf Model ; 63(20): 6436-6450, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827517

RESUMO

Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.


Assuntos
Peptídeos Cíclicos , Peptídeos , Ciclização , Peptídeos/química , Peptídeos Cíclicos/química , Conformação Proteica , Aminoácidos
6.
Nature ; 604(7905): 330-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35172323

RESUMO

The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG13 (refs. 5,6), and pangolins7-9. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.


Assuntos
COVID-19 , Quirópteros , Enzima de Conversão de Angiotensina 2 , Animais , Ásia , Cavernas , Quirópteros/virologia , Reservatórios de Doenças , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
7.
Structure ; 29(12): 1397-1409.e6, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34520738

RESUMO

Type IV pili (T4P) are distinctive dynamic filaments at the surface of many bacteria that can rapidly extend and retract and withstand strong forces. T4P are important virulence factors in many human pathogens, including Enterohemorrhagic Escherichia coli (EHEC). The structure of the EHEC T4P has been determined by integrating nuclear magnetic resonance (NMR) and cryo-electron microscopy data. To better understand pilus assembly, stability, and function, we performed a total of 108 ms all-atom molecular dynamics simulations of wild-type and mutant T4P. Extensive characterization of the conformational landscape of T4P in different conditions of temperature, pH, and ionic strength is complemented with targeted mutagenesis and biochemical analyses. Our simulations and NMR experiments reveal a conserved set of residues defining a calcium-binding site at the interface between three pilin subunits. Calcium binding enhances T4P stability ex vivo and in vitro, supporting the role of this binding site as a potential pocket for drug design.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Microscopia Crioeletrônica
8.
Front Mol Biosci ; 8: 671011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150847

RESUMO

Small-angle X-ray scattering (SAXS) experiments are important in structural biology because they are solution methods, and do not require crystallization of protein complexes. Structure determination from SAXS data, however, poses some difficulties. Computation of a SAXS profile from a protein model is expensive in CPU time. Hence, rather than directly refining against the data, most computational methods generate a large number of conformers and then filter the structures based on how well they satisfy the SAXS data. To address this issue in an efficient manner, we propose here a Bayesian model for SAXS data and use it to directly drive a Monte Carlo simulation. We show that the automatic weighting of SAXS data is the key to finding optimal structures efficiently. Another key problem with obtaining structures from SAXS data is that proteins are often flexible and the data represents an average over a structural ensemble. To address this issue, we first characterize the stability of the best model with extensive molecular dynamics simulations. We analyse the resulting trajectories further to characterize a dynamic structural ensemble satisfying the SAXS data. The combination of methods is applied to a tandem of domains from the protein PTPN4, which are connected by an unstructured linker. We show that the SAXS data contain information that supports and extends other experimental findings. We also show that the conformation obtained by the Bayesian analysis is stable, but that a minor conformation is present. We propose a mechanism in which the linker may maintain PTPN4 in an inhibited enzymatic state.

9.
PLoS Comput Biol ; 17(1): e1008169, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411763

RESUMO

Streptococcus pyogenes (Group A streptococcus; GAS) is an important human pathogen responsible for mild to severe, life-threatening infections. GAS expresses a wide range of virulence factors, including the M family proteins. The M proteins allow the bacteria to evade parts of the human immune defenses by triggering the formation of a dense coat of plasma proteins surrounding the bacteria, including IgGs. However, the molecular level details of the M1-IgG interaction have remained unclear. Here, we characterized the structure and dynamics of this interaction interface in human plasma on the surface of live bacteria using integrative structural biology, combining cross-linking mass spectrometry and molecular dynamics (MD) simulations. We show that the primary interaction is formed between the S-domain of M1 and the conserved IgG Fc-domain. In addition, we show evidence for a so far uncharacterized interaction between the A-domain and the IgG Fc-domain. Both these interactions mimic the protein G-IgG interface of group C and G streptococcus. These findings underline a conserved scavenging mechanism used by GAS surface proteins that block the IgG-receptor (FcγR) to inhibit phagocytic killing. We additionally show that we can capture Fab-bound IgGs in a complex background and identify XLs between the constant region of the Fab-domain and certain regions of the M1 protein engaged in the Fab-mediated binding. Our results elucidate the M1-IgG interaction network involved in inhibition of phagocytosis and reveal important M1 peptides that can be further investigated as future vaccine targets.


Assuntos
Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte , Imunoglobulina G , Streptococcus pyogenes , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Fagocitose , Ligação Proteica , Streptococcus pyogenes/química , Streptococcus pyogenes/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
10.
BMC Bioinformatics ; 21(Suppl 19): 573, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349244

RESUMO

BACKGROUND: Coiled-coils are described as stable structural motifs, where two or more helices wind around each other. However, coiled-coils are associated with local mobility and intrinsic disorder. Intrinsically disordered regions in proteins are characterized by lack of stable secondary and tertiary structure under physiological conditions in vitro. They are increasingly recognized as important for protein function. However, characterizing their behaviour in solution and determining precisely the extent of disorder of a protein region remains challenging, both experimentally and computationally. RESULTS: In this work, we propose a computational framework to quantify the extent of disorder within a coiled-coil in solution and to help design substitutions modulating such disorder. Our method relies on the analysis of conformational ensembles generated by relatively short all-atom Molecular Dynamics (MD) simulations. We apply it to the phosphoprotein multimerisation domains (PMD) of Measles virus (MeV) and Nipah virus (NiV), both forming tetrameric left-handed coiled-coils. We show that our method can help quantify the extent of disorder of the C-terminus region of MeV and NiV PMDs from MD simulations of a few tens of nanoseconds, and without requiring an extensive exploration of the conformational space. Moreover, this study provided a conceptual framework for the rational design of substitutions aimed at modulating the stability of the coiled-coils. By assessing the impact of four substitutions known to destabilize coiled-coils, we derive a set of rules to control MeV PMD structural stability and cohesiveness. We therefore design two contrasting substitutions, one increasing the stability of the tetramer and the other increasing its flexibility. CONCLUSIONS: Our method can be considered as a platform to reason about how to design substitutions aimed at regulating flexibility and stability.


Assuntos
Biologia Computacional/métodos , Proteínas Virais/química , Sequência de Aminoácidos , Vírus do Sarampo/metabolismo , Simulação de Dinâmica Molecular , Vírus Nipah/metabolismo , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Virais/metabolismo
11.
Mol Biol Evol ; 36(11): 2604-2619, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31406981

RESUMO

The systematic and accurate description of protein mutational landscapes is a question of utmost importance in biology, bioengineering, and medicine. Recent progress has been achieved by leveraging on the increasing wealth of genomic data and by modeling intersite dependencies within biological sequences. However, state-of-the-art methods remain time consuming. Here, we present Global Epistatic Model for predicting Mutational Effects (GEMME) (www.lcqb.upmc.fr/GEMME), an original and fast method that predicts mutational outcomes by explicitly modeling the evolutionary history of natural sequences. This allows accounting for all positions in a sequence when estimating the effect of a given mutation. GEMME uses only a few biologically meaningful and interpretable parameters. Assessed against 50 high- and low-throughput mutational experiments, it overall performs similarly or better than existing methods. It accurately predicts the mutational landscapes of a wide range of protein families, including viral ones and, more generally, of much conserved families. Given an input alignment, it generates the full mutational landscape of a protein in a matter of minutes. It is freely available as a package and a webserver at www.lcqb.upmc.fr/GEMME/.

12.
Nucleic Acids Res ; 47(W1): W423-W428, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114872

RESUMO

Loop regions in protein structures often have crucial roles, and they are much more variable in sequence and structure than other regions. In homology modeling, this leads to larger deviations from the homologous templates, and loop modeling of homology models remains an open problem. To address this issue, we have previously developed the DaReUS-Loop protocol, leading to significant improvement over existing methods. Here, a DaReUS-Loop web server is presented, providing an automated platform for modeling or remodeling loops in the context of homology models. This is the first web server accepting a protein with up to 20 loop regions, and modeling them all in parallel. It also provides a prediction confidence level that corresponds to the expected accuracy of the loops. DaReUS-Loop facilitates the analysis of the results through its interactive graphical interface and is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/DaReUS-Loop/.


Assuntos
Modelos Moleculares , Software , Homologia Estrutural de Proteína , Internet
13.
Sci Rep ; 8(1): 16126, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382169

RESUMO

Characterizing a protein mutational landscape is a very challenging problem in Biology. Many disease-associated mutations do not seem to produce any effect on the global shape nor motions of the protein. Here, we use relatively short all-atom biomolecular simulations to predict mutational outcomes and we quantitatively assess the predictions on several hundreds of mutants. We perform simulations of the wild type and 175 mutants of PSD95's third PDZ domain in complex with its cognate ligand. By recording residue displacements correlations and interactions, we identify "communication pathways" and quantify them to predict the severity of the mutations. Moreover, we show that by exploiting simulations of the wild type, one can detect 80% of the positions highly sensitive to mutations with a precision of 89%. Importantly, our analysis describes the role of these positions in the inter-residue communication and dynamical architecture of the complex. We assess our approach on three different systems using data from deep mutational scanning experiments and high-throughput exome sequencing. We refer to our analysis as "infostery", from "info" - information - and "steric" - arrangement of residues in space. We provide a fully automated tool, COMMA2 ( www.lcqb.upmc.fr/COMMA2 ), that can be used to guide medicinal research by selecting important positions/mutations.


Assuntos
Aminoácidos/química , Simulação de Dinâmica Molecular , Mutação/genética , Proteínas/química , Proteínas/genética , Algoritmos , Bases de Dados de Proteínas , Peptídeos/química , Mutação Puntual/genética
14.
Sci Rep ; 8(1): 13673, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209260

RESUMO

Despite efforts during the past decades, loop modeling remains a difficult part of protein structure modeling. Several approaches have been developed in the framework of crystal structures. However, for homology models, the modeling of loops is still far from being solved. We propose DaReUS-Loop, a data-based approach that identifies loop candidates mining the complete set of experimental structures available in the Protein Data Bank. Candidate filtering relies on local conformation profile-profile comparison, together with physico-chemical scoring. Applied to three different template-based test sets, DaReUS-Loop shows significant increase in the number of high-accuracy loops, and significant enhancement for modeling long loops. A special advantage is that our method proposes a prediction confidence score that correlates well with the expected accuracy of the loops. Strikingly, over 50% of successful loop models are derived from unrelated proteins, indicating that fragments under similar constraints tend to adopt similar structure, beyond mere homology.


Assuntos
Caspases/química , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Cristalografia por Raios X , Termodinâmica
15.
BMC Bioinformatics ; 17 Suppl 2: 13, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26823083

RESUMO

BACKGROUND: Proteins adapt to environmental conditions by changing their shape and motions. Characterising protein conformational dynamics is increasingly recognised as necessary to understand how proteins function. Given a conformational ensemble, computational tools are needed to extract in a systematic way pertinent and comprehensive biological information. RESULTS: Here, we present a method, Communication Mapping (COMMA), to decipher the dynamical architecture of a protein. The method first extracts residue-based dynamic properties from all-atom molecular dynamics simulations. Then, it integrates them in a graph theoretic framework, where it identifies groups of residues or protein regions that mediate short- and long-range communication. COMMA introduces original concepts to contrast the different roles played by these regions, namely communication blocks and communicating segment pairs, and evaluates the connections and communication strengths between them. We show the utility and capabilities of COMMA by applying it to three archetypal proteins, namely protein A, the tyrosine kinase KIT and the tumour suppressor p53. CONCLUSION: Our method permits to compare in a direct way the dynamical behaviour either of proteins with different characteristics or of the same protein in different conditions. It is useful to identify residues playing a key role in protein allosteric regulation and to explain the effects of deleterious mutations in a mechanistic way. COMMA is a fully automated tool with broad applicability. It is freely available to the community at www.lcqb.upmc.fr/COMMA .


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Software , Regulação Alostérica , Automação , Humanos , Movimento (Física) , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-kit/química , Proteína Estafilocócica A/química , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA