Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood Adv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640438

RESUMO

Von Willebrand factor (VWF) undergoes complex post-translational modification within endothelial cells (EC) prior to secretion. This includes significant N- and O-linked glycosylation. Previous studies have demonstrated that changes in N-linked glycan structures significantly influence VWF biosynthesis. In contrast, although abnormalities in VWF O-linked glycans (OLG) have been associated with enhanced VWF clearance, their effect on VWF biosynthesis remains poorly explored. Herein, we report a novel role for OLG determinants in regulating VWF biosynthesis and trafficking within EC. We demonstrate that alterations in OLG (notably reduced terminal sialylation) lead to activation of the A1 domain of VWF within EC. In the presence of altered OLG, VWF multimerization is reduced and Weibel-Palade body (WPB) formation significantly impaired. Consistently, the amount of VWF secreted from WPB following EC activation was significantly reduced in the context of O-glycosylation inhibition. Finally, altered OLG on VWF not only reduced the amount of VWF secreted following EC activation, but also affected its hemostatic efficacy. Notably, VWF secreted following WPB exocytosis consisted predominantly of low molecular weight multimers and the length of tethered VWF string formation on the surface of activated ECs was significantly reduced. In conclusion, our data therefore support the hypothesis that alterations in O-glycosylation pathways directly impact VWF trafficking within human EC. These findings are interesting given that previous studies have reported altered OLG on plasma VWF (notably increased T antigen expression) in patients with von Willebrand disease.

2.
Blood Adv ; 7(22): 6974-6989, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37773926

RESUMO

Previous studies have reported elevated von Willebrand factor (VWF) levels in patients with sickle cell disease (SCD) and demonstrated a key role for the VWF-ADAMTS13 axis in the pathobiology of SCD vaso-occlusion. Although blood transfusion is the gold standard for stroke prevention in SCD, the biological mechanisms underpinning its improved efficacy compared with hydroxycarbamide are not fully understood. We hypothesized that the improved efficacy of blood transfusion might relate to differences in VWF-ADAMTS13 axis dysfunction. In total, 180 children with a confirmed diagnosis of SCD (hemoglobin SS) on hydroxycarbamide (n = 96) or blood transfusion (n = 84) were included. Despite disease-modifying treatment, plasma VWF and VWF propeptide were elevated in a significant proportion of children with SCD (33% and 47%, respectively). Crucially, all VWF parameters were significantly higher in the hydroxycarbamide compared with the blood transfusion cohort (P < .05). Additionally, increased levels of other Weibel-Palade body-stored proteins, including factor VIII (FVIII), angiopoietin-2, and osteoprotegerin were observed, indicated ongoing endothelial cell activation. Children treated with hydroxycarbamide also had higher FVIII activity and enhanced thrombin generation compared with those in the blood transfusion cohort (P < .001). Finally, hemolysis markers strongly correlated with VWF levels (P < .001) and were significantly reduced in the blood transfusion cohort (P < .001). Cumulatively, to our knowledge, our findings demonstrate for the first time that despite treatment, ongoing dysfunction of the VWF-ADAMTS13 axis is present in a significant subgroup of pediatric patients with SCD, especially those treated with hydroxycarbamide.


Assuntos
Anemia Falciforme , Hemostáticos , Doenças Vasculares , Humanos , Criança , Fator de von Willebrand/metabolismo , Anemia Falciforme/tratamento farmacológico , Hemólise , Hidroxiureia/uso terapêutico , Transfusão de Sangue , Proteína ADAMTS13
4.
Res Pract Thromb Haemost ; 7(2): 100085, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36817284

RESUMO

Background: Severe COVID-19 is associated with marked endothelial cell (EC) activation that plays a key role in immunothrombosis and pulmonary microvascular occlusion. However, the biological mechanisms through which SARS-CoV-2 causes EC activation and damage remain poorly defined. Objectives: We investigated EC activation in patients with acute COVID-19, and specifically focused on how proteins stored within Weibel-Palade bodies may impact key aspects of disease pathogenesis. Methods: Thirty-nine patients with confirmed COVID-19 were recruited. Weibel-Palade body biomarkers (von Willebrand factor [VWF], angiopoietin-2 [Angpt-2], and osteoprotegerin) and soluble thrombomodulin (sTM) levels were determined. In addition, EC activation and angiogenesis were assessed in the presence or absence of COVID-19 plasma incubation. Results: Markedly elevated plasma VWF antigen, Angpt-2, osteoprotegerin, and sTM levels were observed in patients with acute COVID-19. The increased levels of both sTM and Weibel-Palade body components (VWF, osteoprotegerin, and Angpt-2) correlated with COVID-19 severity. Incubation of COVID-19 plasma with ECs triggered enhanced VWF secretion and increased Angpt-2 expression, as well as significantly enhanced in vitro EC tube formation and angiogenesis. Conclusion: We propose that acute SARS-CoV-2 infection leads to a complex and multifactorial EC activation, progressive loss of thrombomodulin, and increased Angpt-2 expression, which collectively serve to promote a local proangiogenic state.

5.
J Thromb Haemost ; 20(10): 2429-2438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35875995

RESUMO

BACKGROUND: Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. PATIENTS AND METHODS: Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). RESULTS: ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. CONCLUSION: Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence.


Assuntos
COVID-19 , Hemostáticos , Proteína ADAMTS13 , Angiopoietina-2 , COVID-19/complicações , Convalescença , Humanos , Neovascularização Patológica , Osteoprotegerina , Fator Plaquetário 4 , SARS-CoV-2 , Trombina , Fator de von Willebrand/metabolismo , Síndrome de COVID-19 Pós-Aguda
6.
Haematologica ; 107(8): 1827-1839, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081689

RESUMO

Von Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells. VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPB), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde endoplasmic reticulum-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometry-based approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in endothelial cells using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted endothelial cells exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. In brief, we identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Assuntos
Corpos de Weibel-Palade , Fator de von Willebrand , Tamanho Corporal , Células Cultivadas , Células Endoteliais/metabolismo , Exocitose , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
8.
J Thromb Haemost ; 19(10): 2546-2553, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375505

RESUMO

BACKGROUND: Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this "long COVID" syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19. OBJECTIVES: To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis. PATIENTS AND METHODS: Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed. RESULTS: Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI -2.57 to -1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15-416 nM/min), and peak thrombin (p < .0001, 95% CI 39-93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09-0.57 IU/ml; p = .009, 95% CI 0.06-0.5 IU/ml; p = .04, 95% CI 0.03-0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01-2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests. CONCLUSIONS: Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis.


Assuntos
COVID-19 , Idoso , Biomarcadores , COVID-19/complicações , Humanos , SARS-CoV-2 , Fator de von Willebrand , Síndrome de COVID-19 Pós-Aguda
9.
Stem Cell Res ; 54: 102444, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34182253

RESUMO

Induced pluripotent stem cells (iPSCs) were generated from blood outgrowth endothelial cells (BOECs) obtained from a healthy donor and from a patient diagnosed with Hermansky Pudlak Syndrome type 2 (HPS2), caused by compound heterozygous AP3B1 mutations (c.177delA and c.1839-1842delTAGA). BOECs were reprogrammed with a hOKSM self-silencing polycistronic lentiviral vector, where the generated iPSCs showed normal karyotype, expression of pluripotency associated markers and in vitro spontaneous differentiation towards the three germ layers. The generated iPSCs can be used to study HPS2 pathophysiology and the basic functions of AP3B1 protein in different cell types.


Assuntos
Síndrome de Hermanski-Pudlak , Células-Tronco Pluripotentes Induzidas , Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Diferenciação Celular , Células Endoteliais , Heterozigoto , Humanos , Mutação
10.
J Thromb Haemost ; 19(8): 1914-1921, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34053187

RESUMO

BACKGROUND: Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. OBJECTIVES: This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. PATIENTS AND METHODS: Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. RESULTS: We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. CONCLUSIONS: These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy.


Assuntos
COVID-19 , Fator de von Willebrand , Proteína ADAMTS13 , Humanos , SARS-CoV-2 , Trombospondina 1
12.
Haematologica ; 106(4): 1138-1147, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32336681

RESUMO

Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles, so-called Weibel-Palade bodies (WPBs). Hemostatic activity of VWF is strongly tied to WPB length, but how endothelial cells control the dimensions of their WPBs is unclear. In this study we used a targeted shRNA screen to identify the longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology along with disintegration of the Golgi and dilation of rough ER (rER) cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rER and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPBs, and thus adhesive activity of its cargo VWF, is determined by the rate of anterograde transport between ER and Golgi, which depends on Sec22b-containing SNARE complexes.


Assuntos
Células Endoteliais , Corpos de Weibel-Palade , Células Cultivadas , Exocitose , Fator de von Willebrand/genética
13.
Br J Haematol ; 192(4): 714-719, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326604

RESUMO

Endothelial cell (EC) activation plays a key role in the pathogenesis of pulmonary microvascular occlusion, which is a hallmark of severe coronavirus disease 2019 (COVID-19). Consistent with EC activation, increased plasma von Willebrand factor antigen (VWF:Ag) levels have been reported in COVID-19. Importantly however, studies in other microangiopathies have shown that plasma VWF propeptide (VWFpp) is a more sensitive and specific measure of acute EC activation. In the present study, we further investigated the nature of EC activation in severe COVID-19. Markedly increased plasma VWF:Ag [median (interquatile range, IQR) 608·8 (531-830)iu/dl] and pro-coagulant factor VIII (FVIII) levels [median (IQR) 261·9 (170-315) iu/dl] were seen in patients with severe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Sequential testing showed that these elevated VWF-FVIII complex levels remained high for up to 3 weeks. Similarly, plasma VWFpp levels were also markedly elevated [median (IQR) 324·6 (267-524) iu/dl]. Interestingly however, the VWFpp/VWF:Ag ratio was reduced, demonstrating that decreased VWF clearance contributes to the elevated plasma VWF:Ag levels in severe COVID-19. Importantly, plasma VWFpp levels also correlated with clinical severity indices including the Sequential Organ Failure Assessment (SOFA) score, Sepsis-Induced Coagulopathy (SIC) score and the ratio of arterial oxygen partial pressure to fractional inspired oxygen (P/F ratio). Collectively, these findings support the hypothesis that sustained fulminant EC activation is occurring in severe COVID-19, and further suggest that VWFpp may have a role as a biomarker in this setting.


Assuntos
COVID-19/sangue , Células Endoteliais/metabolismo , Precursores de Proteínas/sangue , SARS-CoV-2/metabolismo , Fator de von Willebrand/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
14.
Blood ; 136(24): 2729-2730, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301034
15.
Arterioscler Thromb Vasc Biol ; 40(6): 1441-1453, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375545

RESUMO

Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.


Assuntos
Plaquetas/ultraestrutura , Grânulos Citoplasmáticos/fisiologia , Células Endoteliais/ultraestrutura , Hemostasia/fisiologia , Lisossomos/fisiologia , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/fisiopatologia , Colágeno/fisiologia , Grânulos Citoplasmáticos/ultraestrutura , Humanos , Lisossomos/ultraestrutura , Corpos de Weibel-Palade/fisiologia , Corpos de Weibel-Palade/ultraestrutura , Fator de von Willebrand/metabolismo
16.
J Proteomics ; 205: 103417, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201948

RESUMO

The endothelium stores the hemostatic protein Von Willebrand factor (VWF) in endothelial storage organelles called Weibel-Palade bodies (WPBs). During maturation, WPBs recruit a complex of Rab GTPases and effectors that associate with components of the SNARE machinery that control WPB exocytosis. Recent genome wide association studies have found links between genetic variations in the SNAREs syntaxin-2 (STX2) and syntaxin binding protein 5 (STXBP5) and VWF plasma levels, suggesting a role for SNARE proteins in regulating VWF release. Moreover, we have previously identified the SNARE proteins syntaxin-3 and STXBP1 as regulators of WPB release. In this study we used an unbiased iterative interactomic approach to identify new components of the WPB exocytotic machinery. An interactome screen of syntaxin-3 identifies a number of SNAREs and SNARE associated proteins (STXBP2, STXBP5, SNAP23, NAPA and NSF). We show that the VAMP-like domain (VLD) of STXBP5 is indispensable for the interaction with SNARE proteins and this capacity of the VLD could be exploited to identify an extended set of novel endothelial SNARE interactors of STXBP5. In addition, an STXBP5 variant with an N436S substitution, which is linked to lower VWF plasma levels, does not show a difference in interactome when compared with WT STXBP5. SIGNIFICANCE: The hemostatic protein Von Willebrand factor plays a pivotal role in vascular health: quantitative or qualitative deficiencies of VWF can lead to bleeding, while elevated levels of VWF are associated with increased risk of thrombosis. Tight regulation of VWF secretion from WPBs is therefore essential to maintain vascular homeostasis. We used an unbiased proteomic screen to identify new components of the regulatory machinery that controls WPB exocytosis. Our data expand the endothelial SNARE protein network and provide a set of novel candidate WPB regulators that may contribute to regulation of VWF plasma levels and vascular health.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Células Cultivadas , Exocitose/fisiologia , Células HEK293 , Humanos , Mapas de Interação de Proteínas/fisiologia , Proteômica , Fator de von Willebrand/metabolismo
17.
Haematologica ; 104(10): 2091-2099, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630984

RESUMO

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 ß1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1 Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1-/- endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 ß1, also the µ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8-/-endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.


Assuntos
Complexo 3 de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras , Células Endoteliais , Exocitose , Síndrome de Hermanski-Pudlak , Proteínas R-SNARE/metabolismo , Corpos de Weibel-Palade , Complexo 3 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Sinalização do Cálcio , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patologia , Humanos , Mutação , Transporte Proteico , Proteínas R-SNARE/genética , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo , Corpos de Weibel-Palade/patologia
18.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880488

RESUMO

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Assuntos
Células Endoteliais/metabolismo , Exocitose , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/metabolismo , Via Secretória , Transdução de Sinais , Corpos de Weibel-Palade/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA