Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(6): 064706, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792504

RESUMO

The chemical interactions of two types of graphite and two types of carbon black (CB) with acetone, toluene, and phenol were studied in order to evaluate the influence of chemical treatment on the structure and morphology of the carbon phases. The experimental treatment of carbon phases was carried out at room temperature for 1 hour. The chemical and phase composition were studied by x-ray photoelectron (XP) and Raman spectroscopies, while the morphology and structure were determined by powder x-ray diffraction, as well as transmission electron microscopy techniques. To shed light on the most probable explanation of the observed results, we performed simulations and calculations of the binding energies of acetone, toluene, and phenol with model carbon phases: a perfect graphene sheet and a defective graphene sheet containing various structural defects (vacancies as well as zigzag and armchair edges). Simulations show that all non-covalent and most covalent coupling reactions are exothermic, with acetone coupling having the higher calorimetric effect. Based on the results of the simulations and the XP spectroscopy measurements, the probable reactions taking place during the respective treatments are outlined. The conducted studies (both theoretical and experimental) show that the treatment of graphite powders and CB with acetone, toluene, or phenol can be used as a preliminary stage of their modification and/or functionalization, including their conversion into graphene-like (defective graphene, reduced graphene oxide, and/or graphene oxide) phases. For example, the treatment of SPHERON 5000 with acetone significantly facilitates their subsequent modification with laser radiation to graphene-like phases.

2.
J Phys Chem B ; 122(22): 6072-6078, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29757644

RESUMO

Lower alcohols can induce a combined collapse-swelling de-mixing transition (lower critical solution temperature (LCST)-type co-nonsolvency) in aqueous solutions of poly( N-isopropylacrylamide) (PNIPAM) by interacting with the polymer's amide groups. This interaction results in an increase of the total surface area of hydrophobic sites and destabilizes the chains. Here, we make use of this phenomenon to drive the counterintuitive self-assembly of a PNIPAM-containing double-hydrophilic graft copolymer in water-ethanol mixtures at T ≪ LCST. Rheological frequency sweeps are used to quantify the distinct solvation states of PNIPAM at various temperatures and ethanol concentrations. The energy stored through elastic deformation at the de-mixing transition is simply related to the solvent binding. We find that the storage modulus decreases progressively, but nonlinearly with ethanol concentration, which evidences a preferential solvation pattern. Analogously, through a combination of dynamic light scattering and transmission electron microscope analyses, we demonstrate that a low-temperature structure variation takes place by adding ethanol following a similar solvent-content morphology dependent model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA