Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Dev Neurosci ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527429

RESUMO

BACKGROUND: Ependymomas are the third most common brain cancer in children and have no targeted therapies. They are divided into at least 9 major subtypes based on molecular characteristics and major drivers and have few genetic mutations compared to the adult form of this disease, leading to investigation of other mechanisms. SUMMARY: Epigenetic alterations such as transcriptional programs activated by oncofusion proteins and alterations in histone modifications play an important role in development of this disease. Evidence suggests these alterations interact with the developmental epigenetic programs in the cell of origin to initiate neoplastic transformation and later disease progression, perhaps by keeping a portion of tumor cells in a developmental, proliferative state. KEY MESSAGES: To better understand this disease, research on its developmental origins and associated epigenetic states needs to be further pursued. This could lead to better treatments, which are currently lacking due to the difficult-to-drug nature of known drivers such as fusion proteins. Epigenetic and developmental states characteristic of these tumors may not just be potential therapeutic targets, but used as a tool to find new avenues of treatment.

2.
Brain Stimul ; 15(2): 427-433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35183789

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS: We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS: We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS: Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS: Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Eletroconvulsoterapia , Plasticidade Neuronal , Córtex Piriforme , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Córtex Piriforme/metabolismo , Regiões Promotoras Genéticas , Convulsões/etiologia
3.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741710

RESUMO

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Ependimoma/patologia , Camundongos , Neoplasias Supratentoriais/patologia
4.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31941661

RESUMO

Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance.


Assuntos
Interneurônios , Neuropeptídeos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Expressão Gênica , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases , Receptor trkB
5.
Am J Physiol Endocrinol Metab ; 315(6): E1168-E1184, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253111

RESUMO

Brain-derived neurotrophic factor (BDNF) is a key neuropeptide in the central regulation of energy balance. The Bdnf gene contains nine promoters, each producing specific mRNA transcripts that encode a common protein. We sought to assess the phenotypic outcomes of disrupting BDNF production from individual Bdnf promoters. Mice with an intact coding region but selective disruption of BDNF production from Bdnf promoters I, II, IV, or VI (Bdnf-e1-/-, -e2-/-, -e4-/-, and -e6-/-) were created by inserting an enhanced green fluorescent protein-STOP cassette upstream of the targeted promoter splice donor site. Body composition was measured by MRI weekly from age 4 to 22 wk. Energy expenditure was measured by indirect calorimetry at 18 wk. Food intake was measured in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding was conducted. Weight gain, lean mass, fat mass, and percent fat of Bdnf-e1-/- and Bdnf-e2-/- mice (both sexes) were significantly increased compared with wild-type littermates. For Bdnf-e4-/- and Bdnf-e6-/- mice, obesity was not observed with either chow or high-fat diet. Food intake was increased in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding prevented obesity. Mutant and wild-type littermates for each strain (both sexes) had similar total energy expenditure after adjustment for body composition. These findings suggest that the obesity phenotype observed in Bdnf-e1-/- and Bdnf-e2-/- mice is attributable to hyperphagia and not altered energy expenditure. Our findings show that disruption of BDNF from specific promoters leads to distinct body composition effects, with disruption from promoters I or II, but not IV or VI, inducing obesity.


Assuntos
Composição Corporal/genética , Peso Corporal/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Obesidade/genética , Regiões Promotoras Genéticas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Calorimetria Indireta , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Fenótipo
6.
Brain Struct Funct ; 222(7): 3295-3307, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28324222

RESUMO

Brain-derived neurotrophic factor (BDNF) is an activity-dependent neurotrophin critical for neuronal plasticity in the hippocampus. BDNF is encoded by multiple transcripts with alternative 5' untranslated regions (5'UTRS) that display activity-induced targeting to distinct subcellular compartments. While individual Bdnf 5'UTR transcripts influence dendrite morphology in cultured hippocampal neurons, it is unknown whether Bdnf splice variants impact dendrite arborization in functional classes of neurons in the intact hippocampus. Moreover, the contribution of Bdnf 5'UTR splice variants to dendritic spine density and shape has not been explored. We analyzed the structure of CA1 and CA3 dendrite arbors in transgenic mice lacking BDNF production from exon (Ex) 1, 2, 4, or 6 splice variants (Bdnf-e1, -e2, -e4, and -e6-/- mice) and found that loss of BDNF from individual Bdnf mRNA variants differentially impacts the complexity of apical and basal arbors in vivo. Consistent with the subcellular localization studies, Bdnf Ex2 and Ex6 transcripts significantly contributed to dendrite morphology in both CA1 and CA3 neurons. While Bdnf-e2-/- mice showed increased branching proximal to the soma in CA1 and CA3 apical arbors, Bdnf-e6-/- mice showed decreased apical and basal dendrite complexity. Analysis of spine morphology on Bdnf-e6-/- CA1 dendrites revealed changes in the percentage of differently sized spines on apical, but not basal, branches. These results provide further evidence that Bdnf splice variants generate a spatial code that mediates the local actions of BDNF in distinct dendritic compartments on structural and functional plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Dendritos/metabolismo , Neurônios/citologia , RNA Mensageiro/genética , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Neuropsychopharmacology ; 41(8): 1943-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26585288

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates diverse biological functions ranging from neuronal survival and differentiation during development to synaptic plasticity and cognitive behavior in the adult. BDNF disruption in both rodents and humans is associated with neurobehavioral alterations and psychiatric disorders. A unique feature of Bdnf transcription is regulation by nine individual promoters, which drive expression of variants that encode an identical protein. It is hypothesized that this unique genomic structure may provide flexibility that allows different factors to regulate BDNF signaling in distinct cell types and circuits. This has led to the suggestion that isoforms may regulate specific BDNF-dependent functions; however, little scientific support for this idea exists. We generated four novel mutant mouse lines in which BDNF production from one of the four major promoters (I, II, IV, or VI) is selectively disrupted (Bdnf-e1, -e2, -e4, and -e6 mice) and used a comprehensive comparator approach to determine whether different Bdnf transcripts are associated with specific BDNF-dependent molecular, cellular, and behavioral phenotypes. Bdnf-e1 and -e2 mutant males displayed heightened aggression accompanied by convergent expression changes in specific genes associated with serotonin signaling. In contrast, BDNF-e4 and -e6 mutants were not aggressive but displayed impairments associated with GABAergic gene expression. Moreover, quantifications of BDNF protein in the hypothalamus, prefrontal cortex, and hippocampus revealed that individual Bdnf transcripts make differential, region-specific contributions to total BDNF levels. The results highlight the biological significance of alternative Bdnf transcripts and provide evidence that individual isoforms serve distinct molecular and behavioral functions.


Assuntos
Agressão , Fator Neurotrófico Derivado do Encéfalo/genética , Regiões Promotoras Genéticas , Serotonina/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipotálamo/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA