Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171234

RESUMO

The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.

2.
J Appl Crystallogr ; 55(Pt 4): 919-928, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974731

RESUMO

A systematic study has been carried out to investigate the neutron transmission signal as a function of sample tem-per-ature. In particular, the experimentally de-ter-mined wavelength-dependent neutron attenuation spectra for a martensitic steel at tem-per-atures ranging from 21 to 700°C are com-pared with simulated data. A theoretical description that includes the Debye-Waller factor in order to describe the tem-per-ature influence on the neutron cross sections was im-plemented in the nxsPlotter software and used for the simulations. The analysis of the attenuation coefficients at varying tem-per-atures shows that the missing contributions due to elastic and inelastic scattering can be clearly distinguished: while the elastically scattered intensities decrease with higher tem-per-atures, the inelastically scattered intensities increase, and the two can be separated from each other by analysing unique sharp features in the form of Bragg edges. This study presents the first systematic approach to qu-antify this effect and can serve as a basis , for example, to correct measurements taken during in situ heat treatments, in many cases being a prerequisite for obtaining qu-anti-fiable results.

3.
ChemSusChem ; 15(14): e202200434, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35524709

RESUMO

Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g-1 at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries.

4.
Opt Express ; 30(9): 14461-14477, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473188

RESUMO

A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 µm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here.

5.
Nat Commun ; 13(1): 1616, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338141

RESUMO

In recent years, low-temperature polymer electrolyte fuel cells have become an increasingly important pillar in a zero-carbon strategy for curbing climate change, with their potential to power multiscale stationary and mobile applications. The performance improvement is a particular focus of research and engineering roadmaps, with water management being one of the major areas of interest for development. Appropriate characterisation tools for mapping the evolution, motion and removal of water are of high importance to tackle shortcomings. This article demonstrates the development of a 4D high-speed neutron imaging technique, which enables a quantitative analysis of the local water evolution. 4D visualisation allows the time-resolved studies of droplet formation in the flow fields and water quantification in various cell parts. Performance parameters for water management are identified that offer a method of cell classification, which will, in turn, support computer modelling and the engineering of next-generation flow field designs.

6.
IUCrJ ; 9(Pt 1): 11-20, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35059205

RESUMO

This article summarizes developments attained in oral vaccine formulations based on the encapsulation of antigen proteins inside porous silica matrices. These vaccine vehicles show great efficacy in protecting the proteins from the harsh acidic stomach medium, allowing the Peyer's patches in the small intestine to be reached and consequently enhancing immunity. Focusing on the pioneering research conducted at the Butantan Institute in Brazil, the optimization of the antigen encapsulation yield is reported, as well as their distribution inside the meso- and macroporous network of the porous silica. As the development of vaccines requires proper inclusion of antigens in the antibody cells, X-ray crystallography is one of the most commonly used techniques to unveil the structure of antibody-combining sites with protein antigens. Thus structural characterization and modelling of pure antigen structures, showing different dimensions, as well as their complexes, such as silica with encapsulated hepatitis B virus-like particles and diphtheria anatoxin, were performed using small-angle X-ray scattering, X-ray absorption spectroscopy, X-ray phase contrast tomography, and neutron and X-ray imaging. By combining crystallography with dynamic light scattering and transmission electron microscopy, a clearer picture of the proposed vaccine complexes is shown. Additionally, the stability of the immunogenic complex at different pH values and temperatures was checked and the efficacy of the proposed oral immunogenic complex was demonstrated. The latter was obtained by comparing the antibodies in mice with variable high and low antibody responses.

7.
J Imaging ; 7(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940742

RESUMO

The behaviour of subsurface-reservoir porous rocks is a central topic in the resource engineering industry and has relevant applications in hydrocarbon, water production, and CO2 sequestration. One of the key open issues is the effect of deformation on the hydraulic properties of the host rock and, specifically, in saturated environments. This paper presents a novel full-field data set describing the hydro-mechanical properties of porous geomaterials through in situ neutron and X-ray tomography. The use of high-performance neutron imaging facilities such as CONRAD-2 (Helmholtz-Zentrum Berlin) allows the tracking of the fluid front in saturated samples, making use of the differential neutron contrast between "normal" water and heavy water. To quantify the local hydro-mechanical coupling, we applied a number of existing image analysis algorithms and developed an array of bespoke methods to track the water front and calculate the 3D speed maps. The experimental campaign performed revealed that the pressure-driven flow speed decreases, in saturated samples, in the presence of pre-existing low porosity heterogeneities and compactant shear-bands. Furthermore, the observed complex mechanical behaviour of the samples and the associated fluid flow highlight the necessity for 3D imaging and analysis.

8.
Acta Biomater ; 136: 582-591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601107

RESUMO

Extensive research is being conducted on magnesium (Mg) alloys for bone implant manufacturing, due to their biocompatibility, biodegradability and mechanical properties. Gadolinium (Gd) is among the most promising alloying elements for property control in Mg alloy implants; however, its toxicity is controversial. Investigating Gd behavior during implant corrosion is thus of utmost importance. In this study, we analyzed the degradation byproducts at the implant site of biodegradable Mg-5Gd and Mg-10Gd implants after 12 weeks healing time, using a combination of different imaging techniques: histology, energy-dispersive x-ray spectroscopy (EDX), x-ray microcomputed tomography (µCT) and neutron µCT. The main finding has been that, at the healing time in exam, the corrosion appears to have involved only the Mg component, which has been substituted by calcium and phosphorus, while the Gd remains localized at the implant site. This was observed in 2D by means of EDX maps and extended to 3D with a novel application of neutron tomography. X-ray fluorescence analysis of the main excretory organs also did not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy happened during degradation. STATEMENT OF SIGNIFICANCE: Gadolinium is among the most promising alloying elements for property control in biodegradable magnesium alloy implants, but its toxicity is controversial and its behavior during corrosion needs to be investigated. We combine 2D energy dispersive x-ray spectroscopy and 3D neutron and x-ray tomography to image the degradation of magnesium-gadolinium implants after 12 weeks of healing time. We find that, at the time in exam, the corrosion has involved only the magnesium component, while the gadolinium remains localized at the implant site. X-ray fluorescence analysis of the main excretory organs also does not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy has happened during degradation.


Assuntos
Gadolínio , Magnésio , Implantes Absorvíveis , Ligas , Parafusos Ósseos , Corrosão , Magnésio/farmacologia , Teste de Materiais , Microtomografia por Raio-X
9.
J Imaging ; 7(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34460582

RESUMO

The neutron imaging instrument CONRAD was operated as a part of the user program of the research reactor BER-II at Helmholtz-Zentrum Berlin (HZB) from 2005 to 2020. The instrument was designed to use the neutron flux from the cold source of the reactor, transported by a curved neutron guide. The pure cold neutron spectrum provided a great advantage in the use of different neutron optical components such as focusing lenses and guides, solid-state polarizers, monochromators and phase gratings. The flexible setup of the instrument allowed for implementation of new methods including wavelength-selective, dark-field, phase-contrast and imaging with polarized neutrons. In summary, these developments helped to attract a large number of scientists and industrial customers, who were introduced to neutron imaging and subsequently contributed to the expansion of the neutron imaging community.

10.
Sci Rep ; 11(1): 10578, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012044

RESUMO

Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants-for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water.

11.
Nat Commun ; 11(1): 777, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034126

RESUMO

The temporally and spatially resolved tracking of lithium intercalation and electrode degradation processes are crucial for detecting and understanding performance losses during the operation of lithium-batteries. Here, high-throughput X-ray computed tomography has enabled the identification of mechanical degradation processes in a commercial Li/MnO2 primary battery and the indirect tracking of lithium diffusion; furthermore, complementary neutron computed tomography has identified the direct lithium diffusion process and the electrode wetting by the electrolyte. Virtual electrode unrolling techniques provide a deeper view inside the electrode layers and are used to detect minor fluctuations which are difficult to observe using conventional three dimensional rendering tools. Moreover, the 'unrolling' provides a platform for correlating multi-modal image data which is expected to find wider application in battery science and engineering to study diverse effects e.g. electrode degradation or lithium diffusion blocking during battery cycling.

12.
Opt Express ; 27(20): 28640-28648, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684612

RESUMO

Here, we report on a new record in the acquisition time for fast neutron tomography. With an optimized imaging setup, it was possible to acquire single radiographic projection images with 10 ms and full tomographies with 155 projections images and a physical spatial resolution of 200 µm within 1.5 s. This is about 6.7 times faster than the current record. We used the technique to investigate the water infiltration in the soil with a living lupine root system. The fast imaging setup will be part of the future NeXT instrument at ILL in Grenoble with a great field of possible future applications.


Assuntos
Nêutrons , Tomografia , Lupinus/fisiologia , Raízes de Plantas/fisiologia , Intensificação de Imagem Radiográfica , Solo
13.
Opt Express ; 27(18): 26218-26228, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510480

RESUMO

We herein report on using a compact and low cost scintillator-camera based neutron detection system for quantitative time-of-flight imaging applications. While powerful pulsed neutron sources emerge and enable unprecedented scientific achievements, one bottleneck is the availability of suitable detectors that provide high count- and high frame- rate capabilities. For imaging applications the achievable spatial resolution/pixel size is obviously another key characteristic. While major effort was so far directed towards the development of neutron counting type imaging detectors, this work demonstrates that a camera based detector system as commonly employed at steady state sources can also be used if a suitable camera is utilized. This is demonstrated at the ESS test beamline (V20) at Helmholtz-Zentrum Berlin by recording the time-of-flight transmission spectrum of steel samples using a CMOS camera at 1 kHz frame rate, revealing the characteristic Bragg edge pattern. This 'simple' setup in the current state presents a useful option of neutron detection and has the potential to overcome many of the existing limitations and could provide a reliable alternative for neutron detector technology in general, given that the camera and scintillator technology keep up the current development speed.

14.
Materials (Basel) ; 12(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443453

RESUMO

Operando laboratory X-ray radiographies were carried out for imaging of two different silver-based gas diffusion electrodes containing an electroconductive Ni mesh structure, one gas diffusion electrode composed of 95 wt.% Ag and 5 wt.% polytetrafluoroethylene and one composed of 97 wt.% Ag and 3 wt.% polytetrafluoroethylene, under different operating parameters. Thereby, correlations of their electrochemical behavior and the transport of the 30 wt.% NaOH electrolyte through the gas diffusion electrodes were revealed. The work was divided into two parts. In the first step, the microstructure of the gas diffusion electrodes was analyzed ex situ by a combination of focused ion beam technology and synchrotron as well as laboratory X-ray tomography and radiography. In the second step, operando laboratory X-ray radiographies were performed during chronoamperometric measurements at different potentials. The combination of the ex situ microstructural analyses and the operando measurements reveals the impact of the microstructure on the electrolyte transport through the gas diffusion electrodes. Hence, an impact of the Ni mesh structure within the gas diffusion electrode on the droplet formation could be shown. Moreover, it could be observed that increasing overpotentials cause increasing electrolyte transport velocities and faster droplet formation due to electrowetting. In general, higher electrolyte transport velocities were found for the gas diffusion electrode with 97 wt.% Ag in contrast to that with 95 wt.% Ag.

15.
Nat Plants ; 5(7): 691-696, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285562

RESUMO

All the major clades of angiosperms have a fossil record that extends back to more than 100 million years ago (Early Cretaceous), mostly in agreement with molecular dating. However, the Early Cretaceous record of monocots is very poor compared to other angiosperms. Their herbaceous nature has been invoked to explain this rarity, but biogeography could also be an explanation. Unfortunately, most of the Early Cretaceous angiosperm record comes from northern mid-latitudes. The Crato plattenkalk limestone offers a unique window into the Early Cretaceous vegetation of the tropics and has already yielded monocot fossils. Here, we describe a whole monocotyledonous plant from root to reproductive organs that is anatomically preserved. The good preservation of the fossils allowed the evaluation of reproductive, vegetative and anatomical characteristics of monocots, leading to a robust identification of this fossil as a crown monocot. Its occurrence in Northern Gondwana supports the possibility of an early radiation of monocots in the tropics.


Assuntos
Botânica/história , Magnoliopsida/anatomia & histologia , Evolução Biológica , Fósseis/anatomia & histologia , Fósseis/história , História Antiga , Magnoliopsida/classificação , Magnoliopsida/genética , Magnoliopsida/fisiologia , Filogenia , Folhas de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Reprodução
16.
Sci Rep ; 9(1): 8263, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164712

RESUMO

Innovative solutions have been designed to meet the global demand for energy and environmental sustainability, such as enhanced hydrocarbon recovery and geo-sequestration of CO2. These processes involve the movement of immiscible fluids through permeable rocks, which is affected by the interfacial properties of rocks at the pore scale. Overcoming major challenges in these processes relies on a deeper understanding about the fundamental factors that control the rock wettability. In particular, the efficiency of oil recovery strategies depends largely on the 3D wetting pattern of reservoir rocks, which is in turn affected by the adsorption and deposition of 'contaminant' molecules on the pores' surface. Here, we combined high-resolution neutron tomography (NT) and synchrotron X-ray tomography (XRT) to probe the previously unobserved 3D distribution of molecular and mineralogical heterogeneity of oil reservoir rocks at the pore scale. Retrieving the distribution of neutron attenuation coefficients by Monte Carlo simulations, 3D molecular chemical mappings with micrometer dimensions could be provided. This approach allows us to identify co-localization of mineral phases with chemically distinct hydrogen-containing molecules, providing a solid foundation for the understanding of the interfacial phenomena involved in multiphase fluid flow in permeable media.

17.
Sci Rep ; 9(1): 6106, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988384

RESUMO

Developing a technology that enables oral vaccines to work efficiently remains a considerable effort since a number of difficulties must be addressed. The key objective being to ensure the safe passage through the harsh conditions within the gastrointestinal tract, promoting delivery that induces enhanced immune response. In the particular case of hepatitis B, the oral formulation in the nanostructured silica SBA-15 is a viable approach. As a result of its porous structure, low toxicity and structural stability, SBA-15 is capable to protect and release the hepatitis B surface antigen (HBsAg), used in the vaccination scheme, at the desired destination. Furthermore, when compared to the currently used injection based delivery method, better or similar antibody response has been observed. However, information about the organisation of the antigen protein remains unknown. For instance, HBsAg is too large to enter the 10 nm ordered mesopores of SBA-15 and has a tendency to agglomerate when protected by the delivery system. Here we report on the pH dependence of HBsAg aggregation in saline solution investigated using small angle X-rays scattering that resulted in an optimisation of the encapsulation conditions. Additionally, X-ray microscopy combined with neutron and X-ray tomography provided full 3D information of the HBsAg clustering (i.e. agglomeration) inside the SBA-15 macropores. This method enables the visualisation of the organisation of the antigen in the interior of the delivery system, where agglomerated HBsAg coexists with its immunological effective uniformly distributed counterpart. This new approach, to be taken into account while preparing the formulation, can greatly help in the understanding of clinical studies and advance new formulations.


Assuntos
Portadores de Fármacos/química , Antígenos de Superfície da Hepatite B/química , Vacinas contra Hepatite B/química , Nanoestruturas/ultraestrutura , Vacinação/métodos , Administração Oral , Química Farmacêutica , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Trato Gastrointestinal/química , Hepatite B/prevenção & controle , Antígenos de Superfície da Hepatite B/administração & dosagem , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/imunologia , Vacinas contra Hepatite B/farmacocinética , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Nanoestruturas/química , Porosidade , Agregados Proteicos , Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Propriedades de Superfície , Tomografia por Raios X , Difração de Raios X
18.
Rev Sci Instrum ; 90(12): 125108, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893786

RESUMO

In various kinds of radiography, deficient transmission imaging may occur due to backlighting inside the detector itself arising from light or radiation scattering. The related intensity mismatches barely disturb the high resolution contrast, but its long range nature results in reduced attenuation levels which are often disregarded. Based on X-ray observations and an empirical formalism, a procedure is developed for a first order correction of detector backlighting. A backlighting factor is modeled as a function of the relative detector coverage by the sample projection. Different cases of sample transmission are regarded at different backlight factors and detector coverage. The additional intensity of backlighting may strongly affect the values of materials' attenuation up to a few 10%. The presented scenario provides a comfortable procedure for corrections of X-ray or neutron transmission imaging data.

19.
ChemSusChem ; 12(1): 261-269, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296015

RESUMO

The internal microstructure of a silicon electrode in a lithium ion battery was visualized by operando synchrotron X-ray radioscopy during battery cycling. The silicon particles were found to change their sizes upon lithiation and delithiation and the changes could be quantified. It was found that volume change of a particle is related to its initial size and is also largely determined by the changing surrounding electron-conductive network and internal interface chemical environment (e.g., electrolyte migration, solid-electrolyte interphase propagation) within fractured particles. Moreover, an expansion prolongation phenomenon was discovered whereby some particles continue expanding even after switching the battery current direction and shrinkage would be expected, which is explained by assuming different expansion characteristics of particle cores and outer regions. The study provides new basic insights into processes inside Si particles during lithiation and delithiation and also demonstrates the unique possibilities of operando synchrotron X-ray imaging for studying degradation mechanisms in battery materials.

20.
Plant Cell Environ ; 42(5): 1645-1656, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506732

RESUMO

Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome "wings" and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2 O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this "atmospheric" epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low-shoot xylem hydraulic conductivities.


Assuntos
Tillandsia , Tricomas/fisiologia , Água/fisiologia , Transporte Biológico , Desidratação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA