Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prostate ; 83(1): 16-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35996318

RESUMO

BACKGROUND: The novel selenium-aspirin compound AS-10 was recently reported by us with a cancer cell killing potency three orders of magnitude greater than aspirin in pancreatic cancer cell lines with caspase-mediated apoptosis and a reasonable selectivity against malignant cells. Although we also observed its cytocidal activity against PC-3 and DU145 androgen receptor (AR)-negative and P53-null/mutant aggressive human prostate cancer (PCa) cell lines in NCI-60 screen, the potential involvement and targeting of AR and P53 pathways that are intact in early-stage prostate carcinogenesis has not been examined, nor its primary molecular signaling after exposure. METHODS: Human LNCaP PCa cells with functional AR and intact P53 were used to examine their cell cycle and cell fate responses to AS-10 exposure and upstream molecular signaling events including histone acetylation as a known aspirin effect. The AR-positive 22Rv1 human PCa cells were used to validate key findings. RESULTS: In addition to confirming AS-10's superior cytocidal potency than aspirin against all four PCa cell lines, we report a rapid (within 5 min) promotion of histone acetylation several hours ahead of the suppression of AR and prostate-specific antigen (PSA, coded by KLK3 gene) in LNCaP and 22Rv1 cells. AS-10 decreased AR and KLK3 mRNA levels without impacting pre-existing AR protein degradation or nuclear translocation in LNCaP cells. Sustained exposure to AS-10 arrested cells predominantly in G1 , and induced caspase-mediated apoptosis without necrosis. The death induced by AS-10 in LNCaP cells was attenuated by nontranscriptional activation of P53 protein or Jun N-terminal Kinase cellular stress signaling and was mitigated modestly by glutathione-boosting antioxidant N-acetylcysteine. AS-10 synergized with histone deacetylase inhibitor SAHA to suppress AR/PSA abundance and kill LNCaP cells. RNA-seq confirmed AR suppression at the transcriptional level and suggested multiple oncogene, cyclin, and CDK/CKI transcriptional actions to contribute to the cellular consequences. CONCLUSIONS: AS-10 promotes histone acetylation as its probable primary mechanism of action to induce PCa cell-cycle arrest and apoptosis, regardless of AR and P53 status. Nevertheless, the inhibition of AR signaling through mechanisms distinct from canonical AR antagonists may hold promise for combinatorial use with androgen deprivation therapy regimens or AR-axis targeting drugs.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Próstata , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proteína Supressora de Tumor p53/genética , Histonas , Aspirina/farmacologia , Antagonistas de Androgênios , Apoptose , Caspases
2.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067020

RESUMO

Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-κB) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-α)-stimulated NF-κB nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of κB (IκB) protein. As NF-κB activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy.


Assuntos
Adenocarcinoma/patologia , Apoptose , Aspirina/farmacologia , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Pontos de Checagem da Fase G1 do Ciclo Celular , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Acetilcisteína/farmacologia , Adenocarcinoma/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Aspirina/química , Carcinoma Ductal Pancreático/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Desoxicitidina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Gencitabina , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 20(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691132

RESUMO

The prognosis for patients with metastatic melanoma remains very poor. Constitutive signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis, poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032), suggesting its potential as a molecular target. We recently designed a series of isoseleno- and isothio-urea derivatives of several biologically active heterocyclic scaffolds. The cytotoxic effects of lead isoseleno- and isothio-urea derivatives (compounds 1 and 3) were studied in a panel of five melanoma cell lines, including B-RAFV600E-mutant and wild-type (WT) cells. Compound 1 (IC50 range 0.8⁻3.8 µM) showed lower IC50 values than compound 3 (IC50 range 8.1⁻38.7 µM) and the mutant B-RAF specific inhibitor PLX-4032 (IC50 ranging from 0.4 to >50 µM), especially at a short treatment time (24 h). These effects were long-lasting, since melanoma cells did not recover their proliferative potential after 14 days of treatment. In addition, we confirmed that compound 1 induced cell death by apoptosis using Live-and-Dead, Annexin V, and Caspase3/7 apoptosis assays. Furthermore, compound 1 reduced the protein levels of STAT3 and its phosphorylation, as well as decreased the expression of STAT3-regulated genes involved in metastasis and survival, such as survivin and c-myc. Compound 1 also upregulated the cell cycle inhibitor p21. Docking studies further revealed the favorable binding of compound 1 with the SH2 domain of STAT3, suggesting it acts through STAT3 inhibition. Taken together, our results suggest that compound 1 induces apoptosis by means of the inhibition of the STAT3 pathway, non-specifically targeting both B-RAF-mutant and WT melanoma cells, with much higher cytotoxicity than the current therapeutic drug PLX-4032.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Mieloma Múltiplo/metabolismo , Compostos Organosselênicos/farmacologia , Quinoxalinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mutação , Compostos Organosselênicos/química , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Quinoxalinas/química , Fator de Transcrição STAT3/química , Transdução de Sinais/efeitos dos fármacos
4.
Eur J Med Chem ; 135: 282-295, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28458134

RESUMO

Synthesis and anti-melanoma activity of novel naphthalimide isoselenocyanate (NISC) and naphthalimide selenourea (NSU) analogs are described. The novel agents were screened for growth inhibition of different human melanoma cell lines including those having BRAFV600E mutation (UACC903, 1205Lu, and A375M) and BRAFWT (CHL-1). In general, the NISC analogs (4a-d) were more effective in inhibiting the cell viability than the NSU analogs (7a-b). Overall, NISC-6 (4d), having a six-carbon alkyl chain, was identified as the most cytotoxic compound in both BRAFV600E mutated and BRAFWT cells. NISC-6 docked strongly into the binding sites of Akt1 and human topoisomerase IIα (Topo-IIα), and the docking results were supported by experimental findings showing NISC-6 to inhibit of both Akt pathway and Topo-IIα activity in a dose dependent manner. Furthermore, NISC-6 effectively induced apoptosis in human melanoma cells, inhibited tumor growth by ∼69% in a melanoma mouse xenograft model, and showed excellent compliance with the Lipinski' rule of five, suggesting both its efficacy and drug-like behavior under physiological conditions.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Melanoma/tratamento farmacológico , Naftalenos/farmacologia , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Melanoma/patologia , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Nitrilas/síntese química , Nitrilas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
5.
Pharmaceuticals (Basel) ; 9(1)2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927133

RESUMO

Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise.

6.
Eur J Med Chem ; 113: 134-44, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-26922233

RESUMO

A series of novel selenourea derivatives and corresponding thiourea analogs were synthesized and tested against a panel of six human cancer cell lines: melanoma (1205Lu), lung carcinoma (A549), prostatic carcinoma (DU145), colorectal carcinoma (HCT116), pancreatic epithelioid carcinoma (PANC-1) and pancreatic adenocarcinoma (BxPC3). In general, we found that the selenium-containing derivatives were more potent than their isosteric sulfur analogs. Four selenourea derivatives (1e, 1f, 1g and 1i) showed IC50 values below 10 µM in all of tested cell lines at 72 h. On the basis of its potent activity, compound 1g was selected for further biological evaluation in different colon cancer cell lines. Our results indicated that compound 1g induced apoptosis by caspase activation, along with inhibition of anti-apoptotic proteins.


Assuntos
Antineoplásicos/farmacologia , Compostos Organosselênicos/farmacologia , Tioureia/farmacologia , Ureia/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Tioureia/síntese química , Tioureia/química , Células Tumorais Cultivadas , Ureia/síntese química , Ureia/química , Ureia/farmacologia
7.
J Med Chem ; 59(5): 1946-59, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26750401

RESUMO

The synthesis and anticancer evaluation of novel selenium-nonsteroidal anti-inflammatory drug (Se-NSAID) hybrid molecules are reported. The Se-aspirin analogue 8 was identified as the most effective agent in reducing the viability of different cancer cell lines, particularly colorectal cancer (CRC) cells, was more selective toward cancer cells than normal cells, and was >10 times more potent than 5-FU, the current therapy for CRC. Compound 8 inhibits CRC growth via the inhibition of the cell cycle in G1 and G2/M phases and reduces the cell cycle markers like cyclin E1 and B1 in a dose dependent manner; the inhibition of the cell cycle may be dependent on the ability of 8 to induce p21 expression. Furthermore, 8 induces apoptosis by activating caspase 3/7 and PARP cleavage, and its longer exposure causes increase in intracellular ROS levels in CRC cells. Taken together, 8 has the potential to be developed further as a chemotherapeutic agent for CRC.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Compostos Organosselênicos/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 81: 267-76, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24849271

RESUMO

In continuation of our efforts to find new biologically active agents, regioselective synthesis of a series of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones 4a-k has been achieved under facile, extremely mild and greener reaction conditions with excellent yields. Moreover, one pot multicomponent reaction has also been reinvestigated under previously reported solvent conditions to prepare 4a-b and found that the reaction generates significant amount of side products. The chemical structures of 4a-k were established on the basis of a combined use of IR, NMR ((1)H, (13)C) spectroscopy, mass spectrometry and elemental analysis. All the compounds were evaluated for their antibacterial, DNA photocleavage and anticancer activities. Among all, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-(naphth-2-yl)ethanone 4j displayed good inhibitory profile against Escherichia coli and Staphylococcus aureus which was about 50% and 25% of the Ampicillin (standard drug), respectively. The compounds, 4a and 4f showed relatively moderate inhibition against Psuedomonas aeruginosa and E. coli. In DNA photocleavage study, compounds 4c and 4d were found to be highly active and completely degraded both forms of DNA (SC and OC), even at a very low concentration of 1 µg (4c) under irradiation of UV light. However, 4h and 4f resulted in complete DNA degradation at 30 µg concentration. Moreover, 4h showed fluorescence at 15 µg concentration and increased the intensity of both bands of DNA (SC and OC) as compared to control. On the other hand, to valorize the biological potential, the compounds were screened for their cytotoxic activity on colon (HCT116 and HT29), prostate (DU145), ovarian (SKOV3) and lung (A549) cancer cell lines. The compound 4j was found to be cytotoxic to all the cancer cell lines, except SKOV3, with more selectivity towards the colon cancer cell lines (HCT116, HT29) and A549 lung cancer cell line. On A549 lung cancer cell line, 4j and 4k exhibited similar potency as carboplatin in inhibiting cell viability.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Clivagem do DNA/efeitos dos fármacos , Clivagem do DNA/efeitos da radiação , DNA/química , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Células HCT116 , Células HT29 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Processos Fotoquímicos , Plasmídeos/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA