Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 598(7881): 495-499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497423

RESUMO

Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Proteínas de Ligação a DNA/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
2.
Cell ; 159(6): 1341-51, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25467443

RESUMO

Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hot spots in the genome, often in regions densely populated by nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DM2, which causes multiple independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors limit the combinations of favorable disease resistance alleles accessible to plant genomes.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Epistasia Genética , Sequência de Aminoácidos , Arabidopsis/classificação , Cruzamentos Genéticos , Genoma de Planta , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Fenômenos Fisiológicos Vegetais , Alinhamento de Sequência
3.
J Struct Biol ; 180(1): 243-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22842047

RESUMO

Interpretation of the structural information in cryomicroscopy images recorded on film or CCD camera requires a precise knowledge of the electron microscope parameters that affect image features such as magnification and defocus. Magnification must be determined in order to combine data from different images in a three-dimensional reconstruction and to accurately scale reconstructions for fitting with atomic resolution models. A method is described for estimating the absolute magnification of an electron micrograph of a frozen-hydrated specimen using horse spleen apoferritin as a standard. Apoferritin is a widely available protein complex of known structure that may be included with the specimen of interest and imaged under conditions identical to those used for imaging other biological specimens by cryomicroscopy. The sum of the structure factor intensities of images of randomly-oriented apoferritin particles shows three low resolution peaks to 25Å that arise from the hollow ball structure of apoferritin. Comparison of peak positions of the experimental intensities with structure factor intensities of an atomic model of apoferritin determined by X-ray crystallography provides a scale factor for estimating the absolute magnification of the micrograph. We compare the magnification estimate using apoferritin to that obtained with tobacco mosaic virus, another common magnification standard for cryomicroscopy. We verify the precision of the method by acquiring images with a systematic variation of magnification.


Assuntos
Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/normas , Algoritmos , Animais , Apoferritinas/química , Capsídeo/ultraestrutura , Microscopia Crioeletrônica/métodos , Cavalos , Modelos Moleculares , Estrutura Quaternária de Proteína , Padrões de Referência , Software , Vírus do Mosaico do Tabaco/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA