RESUMO
The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.
Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Aerossóis , Poluentes Atmosféricos/análise , Gasolina/análise , Material Particulado/análise , Enxofre/análise , Emissões de Veículos/análiseRESUMO
Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.
RESUMO
The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.
RESUMO
Background: Indoor allergens (i.e. from mite, cat and dog) are carried by airborne particulate matter. Thus, removal of particles would reduce allergen exposure. This work aims to assess the performance of air filtration on particulate matter and thus allergen removal in 22 bedrooms. Methods: Indoor air was sampled (with and without air filtration) with a cascade impactor and allergens were measured using enzyme-linked immunosorbent assay (ELISA). Particulate matter (including ultrafine particles) was also monitored. Results: The median of allergen reduction was 75.2% for Der f 1 (p < 0.001, n = 20), 65.5% for Der p 1 (p = 0.066, n = 4), 76.6% for Fel d 1 (p < 0.01, n = 21) and 89.3% for Can f 1 (p < 0.01, n = 10). For size fractions, reductions were statistically significant for Der f 1 (all p < 0.001), Can f 1 (PM>10 and PM2.5-10, p < 0.01) and Fel d 1 (PM2.5-10, p < 0.01), but not for Der p 1 (all p > 0.05). PM was reduced in all fractions (p < 0.001). The allergens were found in all particle size fractions, higher mite allergens in the PM>10 and for pet allergens in the PM2.5-10. Conclusions: Air filtration was effective in removing mites, cat and dog allergens and also particulate matter from ambient indoor air, offering a fast and simple solution to mitigate allergen exposome.
RESUMO
The ubiquitous use of phthalates in various materials and the knowledge about their potential adverse effects is of great concern for human health. Several studies have uncovered their role in carcinogenic events and suggest various phthalate-associated adverse health effects that include pulmonary diseases. However, only limited information on pulmonary toxicity is available considering inhalation of phthalates as the route of exposure. While in vitro studies are often based on submerged exposures, this study aimed to expose A549 alveolar epithelial cells at the air-liquid interface (ALI) to unravel the genotoxic and oxidative stress-inducing potential of dibutyl phthalate (DBP) with concentrations relevant at occupational settings. Within this scope, a computer modeling approach calculating alveolar deposition of DBP particles in the human lung was used to define in vitro ALI exposure conditions comparable to potential occupational DBP exposures. The deposited mass of DBP ranged from 0.03 to 20 ng/cm2 , which was comparable to results of a human lung particle deposition model using an 8 h workplace threshold limit value of 580 µg/m3 proposed by the Scientific Committee on Occupational Exposure Limits for the European Union. Comet and Micronucleus assay revealed that DBP induced genotoxicity at DNA and chromosome level in sub-cytotoxic conditions. Since genomic instability was accompanied by increased generation of the lipid peroxidation marker malondialdehyde, oxidative stress might play an important role in phthalate-induced genotoxicity. The results highlight the importance of adapting in vitro studies to exposure scenarios relevant at occupational settings and reconsidering occupational exposure limits for DBP.
Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Dibutilftalato/toxicidade , Mutagênicos/toxicidade , Plastificantes/toxicidade , Células A549 , Adulto , Ar , Sobrevivência Celular/efeitos dos fármacos , Instabilidade Cromossômica/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Humanos , Exposição por Inalação , Masculino , Malondialdeído/metabolismo , Testes para Micronúcleos , Modelos Biológicos , Exposição Ocupacional , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Local de TrabalhoRESUMO
BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.
Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Picea/química , Pinus/química , Fumaça/efeitos adversos , Madeira , Células A549 , Aerossóis , Poluentes Atmosféricos/análise , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Calefação , Humanos , Exposição por Inalação/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Células RAW 264.7 , Fumaça/análise , Especificidade da Espécie , Transcriptoma/efeitos dos fármacosRESUMO
OBJECTIVE: to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. METHOD: 24h quasi-UFP (particulate matter <0.36µm in this study) was sampled at a reference site continuously and at one of 5 other sites (T1, T2, T3, T4 and B1) in parallel in Augsburg, Germany from April 11th, 2014 to February 22nd, 2015, attempting to conduct 2-week campaigns at each site in 3 different seasons. Positive matrix factorization (PMF) was applied to measured organic tracers for source apportionment analyses. Pearson correlation coefficient r and coefficient of divergence (COD) were calculated to investigate spatial temporal variation of source contributions. RESULT: 5 sources were identified comprising biomass burning (BB), traffic emissions (Traffic), biogenic secondary organic aerosol (bioSOA), isoprene originated secondary organic aerosol (isoSOA) and biomass burning related secondary organic aerosol (bbSOA). In general, good temporal correlation and uniform distribution within the study area are found for bioSOA and bbSOA, probably resulting from regional formation/transport. Lower temporal correlation and spatial heterogeneity of isoSOA were found at the city background site with local influence from green space and less traffic impact. BB demonstrated very good temporal correlation, but higher contributions at sites influenced by local residential heating emissions were observed. Traffic showed the least seasonality and lower correlation over time among the sources. However, it demonstrated low spatial heterogeneity of absolute contribution, and only a few days of elevated contribution was found at T3 when wind came directly from the street nearby. CONCLUSION: temporal correlation and spatial variability of sources contributing to the organic fraction of quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP.
RESUMO
To investigate the organic composition and their sources of very fine atmospheric particulate matter (PM), size-segregated PM was sampled using rotating drum impactor (RDI) in series with a sequential filter sampler in Augsburg, Germany, from April 2014 to February 2015. Organic speciation analysis and organic carbon/elemental carbon (OC/EC) analysis was performed for the smallest size fraction PM0.36 (PM<360nm). Different OC fractions were determined by thermal optical EC/OC analyzer, and OC2, OC3 and OC4 refer to OC fractions that were derived at 280, 480 and 580°C, respectively. Positive matrix factorization (PMF) analysis was applied for source apportionment study. PMF resolved 5 sources including biogenic dominated secondary organic aerosol (bioSOA), isoprene dominated SOA (isoSOA), traffic, biomass burning (BB) and biomass burning originated SOA (bbSOA). On annual average, PMF results indicate the largest contribution of biogenic originated SOA (bioSOA plus isoSOA) to OC, followed by traffic and then BB related sources (BB plus bbSOA). Traffic was found to be associated with the smallest particles; whereas bioSOA and BB are associated with larger particles. Secondary organic marker compounds from biogenic precursors, OC2, OC3 and bioSOA, isoSOA source factors show summer maximum. Polycyclic aromatic hydrocarbons (PAHs), biomass burning markers, OC4 and BB, bbSOA source factors show winter maximum. Hopanes and the traffic source factor show little seasonal variation. Summer peaks of OC3 and OC2 are well modeled by PMF and are attributed mainly to biogenic SOA. OC4 was generally poorly modeled due to lack of characteristic low volatile markers. Summer maxima of biogenic SOA related compounds and source factors are positively correlated with temperature, global radiation, O3 concentration and mixing layer height (MLH). Winter maxima of BB related compounds and source factors are negatively correlated with temperature and MLH; whereas positively correlated with NO2 level.
RESUMO
BACKGROUND: The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. METHODS: Equivalent surface area CNP doses in the blood (30mm2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm2; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m2/g specific surface area] for inhalation and IAI respectively. RESULTS: Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. CONCLUSIONS: Our findings indicate that extra-pulmonary effects due to CNP inhalation are dominated by indirect effects (particle-cell interactions in the lung) rather than direct effects (translocated CNPs) within the first hours after exposure. Hence, CNP translocation may not be the key event inducing early cardiovascular impairment following air pollution episodes. The considerable response detected in the aorta after CNP inhalation warrants more emphasis on this tissue in future studies.
Assuntos
Carbono/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas , Material Particulado/toxicidade , Administração por Inalação , Animais , Biomarcadores/sangue , Carbono/administração & dosagem , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Infusões Intra-Arteriais , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Material Particulado/administração & dosagem , Medição de Risco , Fatores de TempoRESUMO
During many measurements it is important to account for possible changes in the gas-particle distribution of aerosols containing semi-volatile organic compounds (SVOCs). If denuders are combined with currently used personal air samplers, a simultaneous differential sampling of the gas and particle phase is possible. Here we analysed the transmission efficiency of denuders based on multi-channel silicone rubber traps (setup: 9 cm long glass liner (ID 4 mm), containing 22 parallel silicone rubber tubes (55 mm long, ID 0.3 mm, OD 0.5 mm)) with polystyrene latex (PSL) particles for different scenarios. n-Hexadecane, dimethyl phthalate and diethylene glycol gases were used to measure the time-dependent gas phase collection efficiency of a denuder. Additionally, the evaporation of n-hexadecane aerosol particles passing through the denuders was investigated. Our results showed high transmission efficiencies from 91 to 100% (variation coefficients 3.69-9.65%) for the denuders operated vertically at a flow rate of 0.5 l min-1. With regard to the gas phase collection efficiency, nonpolar n-hexadecane gas was trapped with higher efficiency (87% after 22 h) than dimethyl phthalate gas (27% after 22 h), while for highly polar diethylene glycol the gas phase collection efficiency was 50% after 2 h. Regarding the evaporation of aerosol particles, smaller particles and lower flow rates led to higher particle volume reduction inside the denuders. In conclusion, the tested denuders are suitable for determining the gas-particle partitioning of SVOC aerosols of nonpolar substances and show above 90% transmission for all tested particle sizes.
Assuntos
Poluentes Atmosféricos/análise , Gases/química , Elastômeros de Silicone/química , Compostos Orgânicos Voláteis/análise , Aerossóis , Tamanho da PartículaRESUMO
Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.
Assuntos
Aerossóis , Poluentes Atmosféricos/análise , Óleos Combustíveis , Gasolina , Navios , Emissões de Veículos/análise , Humanos , Material ParticuladoRESUMO
Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.
Assuntos
Óleos Combustíveis/toxicidade , Gasolina/toxicidade , Macrófagos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Linhagem Celular , Macrófagos/metabolismo , CamundongosRESUMO
To achieve unattended continuous long-term (eg., 1 week) sampling of size-segregated 24-h ambient particulate matter (PM), a sampling strategy of a modified 3-stage rotating drum impactor (RDI) in series with a sequential filter sampler was introduced and verified in a field campaign. Before the field sampling, lab experiment was conducted to test the collection efficiency of the third stage of the RDI using the quartz-fiber filter (QFF) as the substrate. The measured value is 0.36 µm, which is larger than the nominal value 0.1 µm. A fast direct analysis of organic species in all size fractions (<0.36, 0.36-1, 1-2.4, and 2.4-10 µm) of 24-h ambient samples was done using in situ derivatization thermal desorption gas chromatography time-of-flight mass spectrometry (IDTD-GC-TOFMS). A few secondary originated polar markers (dicarboxylic acids, cis-pinonic acid, etc.) were introduced and evaluated using this method for the first time and quantified simultaneously with polycyclic aromatic hydrocarbons (PAH) in the filter samples (<0.36 µm). For the other RDI strip samples (0.36-1, 1-2.4, and 2.4-10 µm), PAH and levoglucosan were quantified. The comparability of two such sampler sets was verified with respect to the PM collection profile of the two RDIs as well as measured concentration of chemical compounds in each sampled size fraction, so that a future epidemiological study on the relationship between the finest PM/its chemical composition and health outcome could be carried out through parallel sampling at two sites. The internal correlations between the size-segregated organic compounds are discussed. Besides, the correlations between the size-segregated organic species and size-segregated particulate number concentration (PNC) as well as meteorological parameter are discussed as well.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Filtração/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Tamanho da PartículaRESUMO
BACKGROUND: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. OBJECTIVES: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. METHODS: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. RESULTS: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot"). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. CONCLUSIONS: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.
Assuntos
Endocitose/efeitos dos fármacos , Gasolina , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Linhagem Celular Tumoral , Humanos , Pulmão/patologia , NaviosRESUMO
Ship diesel combustion particles are known to cause broad cytotoxic effects and thereby strongly impact human health. Particles from heavy fuel oil (HFO) operated ships are considered as particularly dangerous. However, little is known about the relevant components of the ship emission particles. In particular, it is interesting to know if the particle cores, consisting of soot and metal oxides, or the adsorbate layers, consisting of semi- and low-volatile organic compounds and salts, are more relevant. We therefore sought to relate the adsorbates and the core composition of HFO combustion particles to the early cellular responses, allowing for the development of measures that counteract their detrimental effects. Hence, the semi-volatile coating of HFO-operated ship diesel engine particles was removed by stepwise thermal stripping using different temperatures. RAW 264.7 macrophages were exposed to native and thermally stripped particles in submersed culture. Proteomic changes were monitored by two different quantitative mass spectrometry approaches, stable isotope labeling by amino acids in cell culture (SILAC) and dimethyl labeling. Our data revealed that cells reacted differently to native or stripped HFO combustion particles. Cells exposed to thermally stripped particles showed a very differential reaction with respect to the composition of the individual chemical load of the particle. The cellular reactions of the HFO particles included reaction to oxidative stress, reorganization of the cytoskeleton and changes in endocytosis. Cells exposed to the 280 °C treated particles showed an induction of RNA-related processes, a number of mitochondria-associated processes as well as DNA damage response, while the exposure to 580 °C treated HFO particles mainly induced the regulation of intracellular transport. In summary, our analysis based on a highly reproducible automated proteomic sample-preparation procedure shows a diverse cellular response, depending on the soot particle composition. In particular, it was shown that both the molecules of the adsorbate layer as well as particle cores induced strong but different effects in the exposed cells.
Assuntos
Óleos Combustíveis/análise , Óleos Combustíveis/toxicidade , Macrófagos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Linhagem Celular , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Proteômica , Navios , Fuligem/análise , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Fluxo de TrabalhoRESUMO
In this study, we produced a class of diffusion flame soot particles with varying chemical and physical properties by using the mini-Combustion Aerosol STandard (CAST) and applying varying oxidant gas flow rates under constant propane, quenching, and dilution gas supply. We varied the soot properties by using the following fuel-to-air equivalence ratios (Φ): 1.13, 1.09, 1.04, 1.00, 0.96, and 0.89. Within this Φ range, we observed drastic changes in the physical and chemical properties of the soot. Oxidant-rich flames (Φ < 1) were characterized by larger particle size, lower particle number concentration, higher black carbon (BC) concentration, lower brown carbon BrC.[BC](-1) than fuel-rich flames (Φ > 1). To investigate the polycyclic aromatic hydrocarbons (PAH) formation online, we developed a new method for quantification by using the one (13)C-containing doubly charged PAH ion in a high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). The time-resolved concentration showed that the larger PAHs prevailed in the fuel-rich flames and diminished in the oxidant-rich flames. By comparison with the offline in situ derivatization-thermal-desorption gas-chromatography time-of-flight mass spectrometry (IDTD-GC-ToF-MS), we found that the concentration by using the HR-ToF-AMS was underestimated, especially for lower mass PAHs (C14-C18) in the fuel-rich flames possibly due to size limitation and degradation of semi-volatile species under high vacuum and desorption temperature in the latter. For oxidant-rich flames, the large PAHs (C20 and C22) were detected in the HR-ToF-AMS while it was not possible in IDTD-GC-ToF-MS due to matrix effect. The PAH formation was discussed based on the combination of our results and with respect to Φ settings.
Assuntos
Poluentes Atmosféricos/análise , Incineração/instrumentação , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem/análise , Aerossóis/análise , Desenho de Equipamento , Espectrometria de Massas , Tamanho da PartículaRESUMO
Semi-volatile (SV) aerosols still represent an important challenge to occupational hygienists due to toxicological and sampling issues. Particularly problematic is the sampling of hazardous SV that are present in both particulate and vapour phases at a workplace. In this study we investigate the potential evaporation losses of SV aerosols when using off-line filter-adsorber personal samplers. Furthermore, we provide experimental data showing the extent of the evaporation loss that can bias the workplace risk assessment. An experimental apparatus consisting of an aerosol generator, a flow tube and an aerosol monitoring and sampling system was set up inside a temperature controlled chamber. Aerosols from three n-alkanes were generated, diluted with nitrogen and sampled using on-line and off-line filter-adsorber methods. Parallel measurements using the on-line and off-line methods were conducted to quantify the bias induced by filter sampling. Additionally, two mineral oils of different volatility were spiked on filters and monitored for evaporation depending on the samplers flow rate. No significant differences between the on-line and off-line methods were detected for the sum of particles and vapour. The filter-adsorber method however tended to underestimate up to 100% of the particle mass, especially for the more volatile compounds and lower concentrations. The off-line sampling method systematically returned lower particle and higher vapour values, an indication for particle evaporation losses. We conclude that using only filter sampling for the assessment of semi-volatiles may considerably underestimate the presence of the particulate phase due to evaporation. Thus, this underestimation can have a negative impact on the occupational risk assessment if the evaporated particle mass is no longer quantified.
Assuntos
Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Exposição Ocupacional/estatística & dados numéricos , Exposição Ocupacional/análise , Medição de Risco , Local de TrabalhoRESUMO
BACKGROUND: Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. METHODS: We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 µg/m³; 6.1 ± 0.4 × 105 particles/cm³ for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). ( TRIAL REGISTRATION: NCT00527462) RESULTS: For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. CONCLUSIONS: Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects.
Assuntos
Poluentes Atmosféricos/toxicidade , Asma/complicações , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Hipersensibilidade Respiratória/etiologia , Adulto , Poluentes Atmosféricos/química , Asma/fisiopatologia , Testes de Provocação Brônquica , Carbono/administração & dosagem , Carbono/química , Carbono/toxicidade , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Pulmão/imunologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/administração & dosagem , Material Particulado/química , Projetos Piloto , Pneumonia/complicações , Pneumonia/imunologia , Pneumonia/fisiopatologia , Hipersensibilidade Respiratória/complicações , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/fisiopatologia , Índice de Gravidade de DoençaRESUMO
BACKGROUND: Rats are frequently used to study the pharmacological and toxicological effects of inhaled aerosol particles. The deposition behavior of aerosol particles in airways is affected by their hygroscopic properties, which accordingly influence the results of such studies. METHOD: A recently published nonhygroscopic aerosol particle deposition model for rat airways was extended with equations for hygroscopic particle growth in humid air and with a model to mimic the temperature and relative humidity conditions in the rat airways transformed from the upper human airways. As there are no experimental data available for hygroscopic deposition in rat lungs, several model assumptions were made for the humidity distribution in the upper rat airways. RESULTS: The total and regional deposition probability of salt particles in the diameter range 0.02 to 5 µm in rat lung was significantly changed by the hygroscopic properties. The maximum ratios of the total deposition of inhaled initially dry sodium chloride, cobalt chloride, and zinc sulfate particles compared with nonhygroscopic particles were 3.28, 2.44, and 2.13, respectively, and the minimum ratios 0.57, 0.63, and 0.70, respectively. The corresponding maximum (and minimum) ratios for the hygroscopic drugs histamine dihydrochloride, carbenicillin disodium, and atropine sulfate were 1.86 (0.65), 1.53 (0.70), and 1.35 (0.76), respectively. Total deposition was about 20% higher in human airways than in rat airways. The flow regime in the rat upper airways influenced total and regional deposition much less than it did in human airways. CONCLUSION: The hygroscopicity of salt and drug aerosol particles is an important factor in rat lung deposition.