Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1209097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790940

RESUMO

Allergic airway inflammation (AAI) is a chronic respiratory disease that is considered a severe restriction in daily life and is accompanied by a constant risk of acute aggravation. It is characterized by IgE-dependent activation of mast cells, infiltration of eosinophils, and activated T-helper cell type 2 (Th2) lymphocytes into airway mucosa. Purinergic receptor signaling is known to play a crucial role in inducing and maintaining allergic airway inflammation. Previous studies in an ovalbumin (OVA)-alum mouse model demonstrated a contribution of the P2Y2 purinergic receptor subtype (P2RY2) in allergic airway inflammation. However, conflicting data concerning the mechanism by which P2RY2 triggers AAI has been reported. Thus, we aimed at elucidating the cell-type-specific role of P2RY2 signaling in house dust mite (HDM)-driven model of allergic airway inflammation. Thereupon, HDM-driven AAI was induced in conditional knockout mice, deficient or intact for P2ry2 in either alveolar epithelial cells, hematopoietic cells, myeloid cells, helper T cells, or dendritic cells. To analyze the functional role of P2RY2 in these mice models, flow cytometry of bronchoalveolar lavage fluid (BALF), cytokine measurement of BALF, invasive lung function measurement, HDM re-stimulation of mediastinal lymph node (MLN) cells, and lung histology were performed. Mice that were subjected to an HDM-based model of allergic airway inflammation resulted in reduced signs of acute airway inflammation including eosinophilia in BALF, peribronchial inflammation, Th2 cytokine production, and bronchial hyperresponsiveness in mice deficient for P2ry2 in alveolar epithelial cells, hematopoietic cells, myeloid cells, or dendritic cells. Furthermore, the migration of bone-marrow-derived dendritic cells and bone-marrow-derived monocytes, both deficient in P2ry2, towards ATP was impaired. Additionally, we found reduced levels of MCP-1/CCL2 and IL-8 homologues in the BALF of mice deficient in P2ry2 in myeloid cells and lower concentrations of IL-33 in the lung tissue of mice deficient in P2ry2 in alveolar epithelial cells. In summary, our results show that P2RY2 contributes to HDM-induced airway inflammation by mediating proinflammatory cytokine production in airway epithelial cells, monocytes, and dendritic cells and drives the recruitment of lung dendritic cells and monocytes.


Assuntos
Citocinas , Pulmão , Camundongos , Animais , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Citocinas/metabolismo , Pulmão/patologia , Pyroglyphidae , Inflamação/metabolismo
2.
Cells ; 12(4)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36831301

RESUMO

Platelet-rich fibrin (PRF) has a potent anti-inflammatory activity but the components mediating this effect remain unknown. Blood lipids have anti-inflammatory properties. The question arises whether this is also true for the lipid fraction of PRF. To answer this question, lipid fractions of solid and liquid PRF were tested for their potential to lower the inflammatory response of ST2 bone marrow stromal cells and primary bone marrow macrophages exposed to IL1ß and TNFα, and LPS, respectively. Cytokine production and the underlying signalling pathway were analysed by RT-PCR, immunoassays, and Western blotting. We report here that lipids from solid and liquid PRF substantially lowered cytokine-induced expression of IL6, CCL2 and CCL5 in ST2 cells. Moreover, the inflammatory response induced by Pam3CSK4, the agonist of Toll-like receptor (TLR) TLR2, was partially reduced by the lipid extracts in ST2 cells. The PRF lipids further reduced the LPS-induced expression of IL1ß, IL6 and CCL5 in macrophages at the transcriptional level. This was confirmed by showing the ability of PRF lipids to diminish IL6 at the protein level in ST2 cells and macrophages. Likewise, PRF lipid extracts reduced the phosphorylation of p38 and JNK and moderately decreased the phosphorylation of NFκB-p65 in ST2 cells. These findings suggest that the lipid fraction is at least partially responsible for the anti-inflammatory activity of PRF in vitro.


Assuntos
Células-Tronco Mesenquimais , Fibrina Rica em Plaquetas , Fibrina Rica em Plaquetas/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-6/metabolismo , Macrófagos , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo
3.
Front Immunol ; 14: 1310098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179047

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality resulting from a direct or indirect injury of the lung. It is characterized by a rapid alveolar injury, lung inflammation with neutrophil accumulation, elevated permeability of the microvascular-barrier leading to an aggregation of protein-rich fluid in the lungs, followed by impaired oxygenation in the arteries and eventual respiratory failure. Very recently, we have shown an involvement of the Gq-coupled P2Y2 purinergic receptor (P2RY2) in allergic airway inflammation (AAI). In the current study, we aimed to elucidate the contribution of the P2RY2 in lipopolysaccharide (LPS)-induced ARDS mouse model. We found that the expression of P2ry2 in neutrophils, macrophages and lung tissue from animals with LPS-induced ARDS was strongly upregulated at mRNA level. In addition, ATP-neutralization by apyrase in vivo markedly attenuated inflammation and blocking of P2RY2 by non-selective antagonist suramin partially decreased inflammation. This was indicated by a reduction in the number of neutrophils, concentration of proinflammatory cytokines in the BALF, microvascular plasma leakage and reduced features of inflammation in histological analysis of the lung. P2RY2 blocking has also attenuated polymorphonuclear neutrophil (PMN) migration into the interstitium of the lungs in ARDS mouse model. Consistently, treatment of P2ry2 deficient mice with LPS lead to an amelioration of the inflammatory response showed by reduced number of neutrophils and concentrations of proinflammatory cytokines. In attempts to identify the cell type specific role of P2RY2, a series of experiments with conditional P2ry2 knockout animals were performed. We observed that P2ry2 expression in neutrophils, but not in the airway epithelial cells or CD4+ cells, was associated with the inflammatory features caused by ARDS. Altogether, our findings imply for the first time that increased endogenous ATP concentration via activation of P2RY2 is related to the pathogenesis of LPS-induced lung inflammation and may represent a potential therapeutic target for the treatment of ARDS and predictably assess new treatments in ARDS.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Síndrome do Desconforto Respiratório/induzido quimicamente , Inflamação , Citocinas , Modelos Animais de Doenças , Receptores Purinérgicos , Trifosfato de Adenosina
4.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077174

RESUMO

Enamel matrix derivative (EMD) prepared from extracted porcine fetal tooth material can support the regrow of periodontal tissues. Previous findings suggest that EMD has anti-inflammatory properties and TGF-ß activity in vitro. However, the anti-inflammatory activity of EMD is mediated via TGF-ß has not been considered. To this aim, we first established a bioassay to confirm the anti-inflammatory activity of EMD. The bioassay was based on the RAW 264.7 macrophage cell line and proven with primary macrophages where EMD significantly reduced the forced expression of IL-6. We then confirmed the presence of TGF-ß1 in EMD by immunoassay and by provoking the Smad2/3 nuclear translocation in RAW 264.7 macrophages. Next, we took advantage of the TGF-ß receptor type I kinase-inhibitor SB431542 to block the respective signalling pathway. SB431542 reversed the anti-inflammatory activity of EMD and TGF-ß in a bioassay when IL-6 and CXCL2 expression was driven by the LPS stimulation of RAW 264.7 macrophages. This central observation was supported by showing that SB431542 reversed the anti-inflammatory activity of EMD using IL-1ß and TNF-α-stimulated ST2 bone marrow stromal cells. Together, these findings implicate that the TGF-ß activity mediates at least part of the anti-inflammatory activity of EMD in vitro.


Assuntos
Proteínas do Esmalte Dentário , Interleucina-6 , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Proteínas do Esmalte Dentário/farmacologia , Suínos , Fator de Crescimento Transformador beta
5.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955441

RESUMO

BACKGROUND: Pyroptosis is a catabolic process relevant to periodontal disorders for which interleukin-1ß (IL-1ß) inflammation is central to the pathophysiology of the disease. Despite platelet-rich fibrin (PRF) anti-inflammatory properties and its application to support periodontal regeneration, the capacity of PRF to modulate pyroptosis, specifically the production and release of IL-1ß, remains unknown. The question arises whether PRF could regulate IL-1ß release from macrophages in vitro. METHODS: To answer this question, RAW 264.7 macrophages and primary macrophages obtained from murine bone marrow were primed with PRF before being challenged by lipopolysaccharide (LPS). Cells were then analysed for the pyroptosis signalling components by gene expression analyses and IL-1ß secretion at the protein level. The release of mitochondrial reactive oxygen species (ROS) was also detected. RESULTS: PRF lowered the LPS-induced expression of IL-1ß and NLRP3 inflammasome, caspase-11 and IL-18 in primary macrophages, and IL-1ß and caspase-11 in RAW 264.7 cells. Additionally, PRF diminished the secretion of IL-1ß at the protein level in LPS-induced RAW 264.7 cells. This was shown through immunoassays performed with the supernatant and further confirmed by analysing the lysates of permeabilised cells. Furthermore, PRF reduced the ROS release provoked by LPS in RAW 264.7 cells. Finally, to enhance IL-1ß release from the LPS-primed macrophages, we introduced a second signal with adenosine triphosphate (ATP). In this setting, PRF significantly reduced IL-1ß release in RAW 264.7 cells and a trend to diminish IL-1ß release in primary macrophages. CONCLUSION: These findings suggest that PRF can reduce IL-1ß release and, at least in part, inhibit pyroptosis-related factors in LPS-challenged macrophages.


Assuntos
Fibrina Rica em Plaquetas , Piroptose , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Clin Med ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887825

RESUMO

Damage to mesenchymal cells occurs by dental implant drills as a consequence of shear forces and heat generation. However, how the damaged mesenchymal cells can affect the polarization of macrophages and their differentiation into osteoclastogenesis is not fully understood. To simulate cell damage, we exposed suspended ST2 murine bone marrow stromal cells to freeze/thawing or sonication cycles, followed by centrifugation. We then evaluated the lysates for their capacity to modulate lipopolysaccharide-induced macrophage polarization and RANKL-MCSF-TGF-ß-induced osteoclastogenesis. We report that lysates of ST2, particularly when sonicated, greatly diminished the expression of inflammatory IL6 and COX2 as well as moderately increased arginase 1 in primary macrophages. That was confirmed by lysates obtained from the osteocytic cell line IDG-SW3. Moreover, the ST2 lysate lowered the phosphorylation of p65 and p38 as well as the nuclear translocation of p65. We further show herein that lysates of damaged ST2 reduced the formation of osteoclast-like cells characterized by their multinuclearity and the expression of tartrate-resistant phosphatase and cathepsin K. Taken together, our data suggest that thermal and mechanical damage of mesenchymal cells causes the release of as-yet-to-be-defined molecules that dampen an inflammatory response and the formation of osteoclasts in vitro.

7.
Life (Basel) ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35888133

RESUMO

Periodontitis is an inflammatory process that is associated with caspase activity. Caspases could thus become molecular targets for the modulation of the inflammatory response to harmful factors, such as lipopolysaccharides (LPS) and TNFα. Here, the impact of the pan-caspase inhibitor Z-VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro-methyl ketone) on the modulation of the LPS-induced inflammatory response of murine RAW 264.7 cells and primary macrophages was examined. Moreover, the inflammatory responses of human gingival fibroblasts, HSC2 oral squamous carcinoma cells and murine ST2 mesenchymal fibroblasts when exposed to TNFα were studied. Data showed that Z-VAD-FMK significantly lowered the inflammatory response of RAW 264.7 cells and primary macrophages, as indicated by the expression of IL1 and IL6. In murine ST2 mesenchymal fibroblasts, the TNFα-induced expression of CCL2 and CCL5 was significantly reduced. In human gingival fibroblasts and HSC2 cells, Z-VAD-FMK considerably reduced the TNFα-induced expression of CXCL8 and CXCL10. These findings suggest that pharmacological blocking of caspases in an inflammatory environment lowers the expression of cytokines and chemokines in periodontal cells.

8.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682575

RESUMO

The preparation of platelet-rich fibrin (PRF) requires blood centrifugation to separate the yellow plasma from the red erythrocyte fraction. PRF membranes prepared from coagulated yellow plasma are then transferred to the defect sites to support tissue regeneration. During natural wound healing, however, it is the unfractionated blood clot (UBC) that fills the defect site. It is unclear whether centrifugation is necessary to prepare a blood-derived matrix that supports tissue regeneration. The aim of the present study was to compare lysates prepared from PRF and UBC based on bioassays and degradation of the respective membranes. We report here that lysates prepared from PRF and UBC membranes similarly activate TGF-ß signaling, as indicated by the expression of interleukin 11 (IL-11), NADPH oxidase 4 (NOX-4) and proteoglycan 4 (PRG4) in gingival fibroblasts. Consistently, PRF and UBC lysates stimulated the phosphorylation and nuclear translocation of Smad3 in gingival fibroblasts. We further observed that PRF and UBC lysates have comparable anti-inflammatory activity, as shown by the reduction in lipopolysaccharide (LPS)-induced IL-6, inducible nitric oxidase synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in RAW264.7 cells. Moreover, inflammation induced by Poly (1:C) HMW and FSL-1, which are agonists of Toll-like receptor (TLR) 3 and 2/6, respectively, was reduced by both PRF and UBC. PRF and UBC lysates reduced the nuclear translocation of p65 in LPS-induced RAW264.7 cells. In contrast to the similar activity observed in the bioassays, UBC membranes lack the structural integrity of PRF membranes, as indicated by the rapid and spontaneous disintegration of UBC membranes. We show here that the lysates prepared from PRF and UBC possess robust TGF-ß and anti-inflammatory activity. However, visual inspection of the PRF and UBC membranes confirmed the negative impact of erythrocytes on the structural integrity of membranes prepared from whole blood. The data from the present study suggest that although both UBC and PRF have potent TGF-ß and anti-inflammatory activity, UBC does not have the strength properties required to be used clinically to prepare applicable membranes. Thus, centrifugation is necessary to generate durable and clinically applicable blood-derived membranes.


Assuntos
Fibrina Rica em Plaquetas , Trombose , Anti-Inflamatórios/metabolismo , Plaquetas , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipopolissacarídeos/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Trombose/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408442

RESUMO

Liquid platelet-rich fibrin (PRF) is produced by fractionation of blood without additives that initiate coagulation. Even though liquid PRF is frequently utilized as a natural source of fibrinogen to prepare sticky bone, the concentration of fibrinogen and the overall amount of "clottable PRF" components have not been evaluated. To this aim, we prepared liquid PRF at 300, 700, and 2000 relative centrifugal force (RCF), for 8 min and quantified the fibrinogen levels by immunoassay. We report here that, independent of the RCF, the fibrinogen concentration is higher in the platelet-poor plasma (PPP) compared to the buffy coat (BC) fraction of liquid PRF and further decreases in the remaining red fraction. We then determined the weight of the clotted PRF fractions before and after removing the serum. The PPP and BC fractions consist of 10.2% and 25.3% clottable matrix suggesting that more than half of the weight of clottable BC is caused by cellular components. Our data provide insights into the distribution of fibrinogen in the different fractions of liquid PRF. These findings suggest that PPP is the main source of clottable fibrinogen, while the BC is more a cell source when it comes to the preparation of sticky bone.


Assuntos
Fibrina Rica em Plaquetas , Coagulação Sanguínea , Plaquetas , Centrifugação/métodos , Fibrinogênio , Plasma
10.
BMC Oral Health ; 21(1): 581, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789212

RESUMO

BACKGROUND: Milk is a rich source of natural growth factors that may support oral tissue homeostasis and wound healing. We had shown earlier that blocking TGF-ß receptor type I kinase with the inhibitor SB431542 abolished the expression of IL11 and other genes in human gingival fibroblasts exposed to the aqueous fraction of milk. Our aim was to identify the entire signature of TGF-ß receptor type I kinase-dependent genes regulated by the aqueous fraction of human milk. RESULT: RNAseq revealed 99 genes being strongly regulated by milk requiring activation of the SB431542-dependent TGF-ß receptor type I kinase. Among the SB431542-dependent genes is IL11 but also cadherins, claudins, collagens, potassium channels, keratins, solute carrier family proteins, transcription factors, transmembrane proteins, tumor necrosis factor ligand superfamily members, and tetraspanin family members. When focusing on our candidate gene, we could identify D609 to suppress IL11 expression, independent of phospholipase C, sphinosine-1 phosphate synthesis, and Smad-3 phosphorylation and its nuclear translocation. In contrast, genistein and blocking phosphoinositide 3-kinases by wortmannin and LY294002 increased the milk-induced IL11 expression in gingival fibroblasts. CONCLUSION: Taken together, our data revealed TGF-ß receptor type I kinase signaling to cause major changes of the genetic signature of gingival fibroblasts exposed to aqueous fraction of human milk.


Assuntos
Leite , Fator de Crescimento Transformador beta , Animais , Células Cultivadas , Fibroblastos , Gengiva , Humanos , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
11.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768764

RESUMO

Chronic inflammation is a pathological process where cells of the mesenchymal lineage become a major source of inflammatory mediators. Platelet-rich fibrin (PRF) has been shown to possess potent anti-inflammatory activity in macrophages, but its impact on mesenchymal cells has not been investigated. The aim of this study was, therefore, to expose mesenchymal cells to inflammatory cytokines together with lysates generated from liquid platelet-poor plasma (PPP), the cell-rich buffy coat layer (BC; concentrated-PRF or C-PRF), and the remaining red clot layer (RC), following centrifugation of blood. Heating PPP generates an albumin gel (Alb-gel) that when mixed back with C-PRF produces Alb-PRF. Membranes prepared from solid PRF were also subjected to lysis. We report here that lysates of PPP, BC, and PRF decreased the cytokine-induced expression of interleukin 6 (IL6) and nitric oxide synthase (iNOS) in the bone marrow-derived ST2 cells. Consistently, PPP, BC, and PRF greatly decreased the phosphorylation and nuclear translocation of p65 in ST2 cells. The inflammatory response caused by Pam3CSK4 was reduced accordingly. Moreover, PPP, BC, and PRF reduced the enhanced expression of inflammatory mediators IL6 and iNOS in 3T3-L1 pre-adipocyte mesenchymal cells, and iNOS and CCL5 in murine calvarial cells. Surprisingly, PRF lysates were not effective in reducing the inflammatory response of human gingival fibroblasts and HSC2 epithelial cells. The data from the present study suggest that both liquid PRF and solid PRF exert potent anti-inflammatory activity in murine mesenchymal cells.


Assuntos
Anti-Inflamatórios/metabolismo , Inflamação/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Animais , Buffy Coat/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Citocinas/toxicidade , Fibroblastos/metabolismo , Gengiva/metabolismo , Humanos , Inflamação/induzido quimicamente , Camundongos , NF-kappa B/antagonistas & inibidores , Plasma/metabolismo , Cultura Primária de Células , Receptor 2 Toll-Like/agonistas , Fator de Transcrição RelA/metabolismo
12.
Materials (Basel) ; 14(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832320

RESUMO

Dentin prepared from extracted teeth is used as autograft for alveolar bone augmentation. Graft consolidation involves the acid lysis of dentin thereby generating a characteristic paracrine environment. Acid lysate of dentin is mimicking this environment. Acid dentin lysate (ADL) potentially targets hematopoietic cells thereby affecting their differentiation towards macrophages and osteoclasts; however, the question remains if ADL controls macrophage polarization and osteoclastogenesis. Here, we show that ADL reduced lipopolysaccharide (LPS)-induced macrophage polarization of the pro-inflammatory (M1) phenotype, indicated by attenuated Interleukin 1 (IL1), Interleukine 6 (IL6)and cyclooxygenase 2 (COX2) expression. This decrease in M1 macrophages was confirmed by the reduced phosphorylation and nuclear translocation of p65 in the LPS-exposed RAW 264.7 macrophages. Similarly, when RAW 264.7 macrophages were incubated with other agonists of Toll-like receptor (TLR) signaling e.g., FSL1, Polyinosinic-polycytidylic acid High Molecular Weight (Poly (1:C) HMW), Pam3CSK4, and imiquimod, ADL reduced the IL6 expression. We further show herein that ADL decreased osteoclastogenesis indicated by the reduced formation of multinucleated cell expressing cathepsin K and tartrate-resistant acid phosphatase in murine bone marrow cultures. Overall, our results suggest that acid dentin lysate can affect the differentiation of hematopoietic cells to M1 macrophage polarization and a decrease in osteoclastogenesis in bone marrow cultures.

13.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34360701

RESUMO

Solid platelet-rich fibrin (PRF), consisting of coagulated plasma from fractionated blood, has been proposed to be a suitable carrier for recombinant bone morphogenetic protein 2 (BMP2) to target mesenchymal cells during bone regeneration. However, whether solid PRF can increase the expression of BMPs in mesenchymal cells remains unknown. Proteomics analysis confirmed the presence of TGF-ß1 but not BMP2 in PRF lysates. According to the existing knowledge of recombinant TGF-ß1, we hypothesized that PRF can increase BMP2 expression in mesenchymal cells. To test this hypothesis, we blocked TGF-ß receptor 1 kinase with SB431542 in gingival fibroblasts exposed to PRF lysates. RT-PCR and immunoassays confirmed that solid PRF lysates caused a robust SB431542-dependent increase in BMP2 expression in gingival fibroblasts. Additionally, fractions of liquid PRF, namely platelet-poor plasma (PPP) and the buffy coat (BC) layer, but not heat-denatured PPP (Alb-gel), greatly induced the expression of BMP2 in gingival fibroblasts. Even though PRF has no detectable BMPs, PRF lysates similar to recombinant TGF-ß1 had the capacity to provoke canonical BMP signaling, as indicated by the nuclear translocation of Smad1/5 and the increase in its phosphorylation. Taken together, our data suggest that PRF can activate TGF-ß receptor 1 kinase and consequently induce the production of BMP2 in cells of the mesenchymal lineage.


Assuntos
Proteína Morfogenética Óssea 2/genética , Fibroblastos/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Transdução de Sinais , Adulto , Regeneração Óssea , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Gengiva/citologia , Humanos , Masculino , Proteômica , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
14.
Sci Rep ; 11(1): 12247, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112817

RESUMO

Particulate autologous tooth roots are increasingly used for alveolar bone augmentation; however, the proteomic profile of acid dentin lysate and the respective cellular response have not been investigated. Here we show that TGF-ß1 is among the 226 proteins of acid dentin lysate (ADL) prepared from porcine teeth. RNA sequencing identified 231 strongly regulated genes when gingival fibroblasts were exposed to ADL. Out of these genes, about one third required activation of the TGF-ß receptor type I kinase including interleukin 11 (IL11) and NADPH oxidase 4 (NOX4). Reverse transcription-quantitative polymerase chain reaction and immunoassay confirmed the TGF-ß-dependent expression of IL11 and NOX4. The activation of canonical TGF-ß signaling by ADL was further confirmed by the phosphorylation of Smad3 and translocation of Smad2/3, using Western blot and immunofluorescence staining, respectively. Finally, we showed that TGF-ß activity released from dentin by acid lysis adsorbs to titanium and collagen membranes. These findings suggest that dentin particles are a rich source of TGF-ß causing a major response of gingival fibroblasts.


Assuntos
Dentina/metabolismo , Genômica , Proteômica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Genômica/métodos , Gengiva/citologia , Ligação Proteica , Proteômica/métodos , Transcriptoma
15.
Biology (Basel) ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807565

RESUMO

Autogenous tooth roots are increasingly applied as a grafting material in alveolar bone augmentation. Since tooth roots undergo creeping substitution similar to bone grafts, it can be hypothesized that osteoclasts release the growth factors stored in the dentin thereby influencing bone formation. To test this hypothesis, collagen membranes were either soaked in acid dentin lysates (ADL) from extracted porcine teeth or serum-free medium followed by lyophilization. Thereafter, these membranes covered standardized 5-mm-diameter critical-size defects in calvarial bone on rats. After four weeks of healing, micro-computed tomography and histological analyses using undecalcified thin ground sections were performed. Micro-computed tomography of the inner 4.5 mm calvaria defects revealed a median bone defect coverage of 91% (CI: 87-95) in the ADL group and 94% (CI: 65-100) in the control group, without significant differences between the groups (intergroup p > 0.05). Furthermore, bone volume (BV) was similar between ADL group (5.7 mm3, CI: 3.4-7.1) and control group (5.7 mm3, CI: 2.9-9.7). Histomorphometry of the defect area confirmed these findings with bone area values amounting to 2.1 mm2 (CI: 1.2-2.6) in the ADL group and 2.0 mm2 (CI: 1.1-3.0) in the control group. Together, these data suggest that acid dentin lysate lyophilized onto collagen membranes failed to modulate the robust bone formation when placed onto calvarial defects.

16.
Front Immunol ; 12: 636427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897689

RESUMO

Macrophage activation and osteoclastogenesis are hallmarks of inflammatory osteolysis and may be targeted by the local application of liquid platelet-rich fibrin (PRF). Liquid PRF is produced by a hard spin of blood in the absence of clot activators and anticoagulants, thereby generating an upper platelet-poor plasma (PPP) layer, a cell-rich buffy coat layer (BC; termed concentrated-PRF or C-PRF), and the remaining red clot (RC) layer. Heating PPP has been shown to generate an albumin gel (Alb-gel) that when mixed back with C-PRF generates Alb-PRF having extended working properties when implanted in vivo. Evidence has demonstrated that traditional solid PRF holds a potent anti-inflammatory capacity and reduces osteoclastogenesis. Whether liquid PRF is capable of also suppressing an inflammatory response and the formation of osteoclasts remains open. In the present study, RAW 264.7 and primary macrophages were exposed to lipopolysaccharides (LPS), lactoferrin, and agonists of Toll-like receptors (TLR3 and TLR7) in the presence or absence of lysates prepared by freeze-thawing of liquid PPP, BC, Alb-gel, and RC. For osteoclastogenesis, primary macrophages were exposed to receptor activator of nuclear factor kappa B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and human transforming growth factor-ß1 (TGF-ß1) in the presence or absence of PPP, BC, Alb-gel, RC lysates and hemoglobin. We show here that it is mainly the lysates prepared from PPP and BC that consistently reduced the agonist-induced expression of interleukin 6 (IL6) and cyclooxygenase-2 (COX2) in macrophages, as determined by RT-PCR and immunoassay. With respect to osteoclastogenesis, lysates from PPP and BC but also from RC, similar to hemoglobin, reduced the expression of osteoclast marker genes tartrate-resistant acid phosphatase (TRAP) and cathepsin K, as well as TRAP histochemical staining. These findings suggest that liquid PRF holds a potent in vitro heat-sensitive anti-inflammatory activity in macrophages that goes along with an inhibition of osteoclastogenesis.


Assuntos
Inflamação/prevenção & controle , Ativação de Macrófagos , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Plasma Rico em Plaquetas/metabolismo , Animais , Imiquimode/farmacologia , Inflamação/sangue , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lactoferrina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteogênese/efeitos dos fármacos , Fenótipo , Poli I-C/farmacologia , Células RAW 264.7 , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo
17.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276685

RESUMO

Particulate autogenous tooth roots are used for alveolar bone augmentation surgery; however, dental plaque may provoke an inflammatory response that may counteract the desired graft consolidation process. Traditional mechanical cleaning of extracted teeth may be of support to lower a possible inflammatory response of the autograft. To test this assumption, extracted porcine teeth were left either uncleaned or underwent mechanical cleaning with a toothbrush and toothpaste before being fragmented and subjected to acid lysis, termed as unclean acid dentine lysate (ucADL) and clean acid dentine lysate (cADL), respectively. The inflammatory responses of murine macrophage RAW 264.7 cells being exposed to the respective acid dentine lysates were evaluated at the level of inflammatory gene expression and IL6 immunoassays. We report here that acid lysates obtained from uncleaned teeth provoked a robust increase in IL1ß, IL6, and COX2 in RAW 264.7 cells. The mechanical removal of dental plaque significantly reduced the inflammatory response. Consistently, Limulus tests revealed that tooth cleaning lowers the presence of endotoxins in dentine lysates. To further prove the involvement of endotoxins, a toll-like receptor 4 (TLR4) inhibitor TAK242 was introduced. TAK242 abolished the inflammatory response provoked by acid lysates obtained from uncleaned teeth in RAW 264.7 cells. Moreover, nuclear translocation and phosphorylation of the TLR4 downstream NFκB-p65 were attenuated at the presence of cleaned versus uncleaned dentine lysates. Taken together, our data support the importance of dental plaque removal of teeth being extracted for alveolar bone augmentation surgery.


Assuntos
Dentina/metabolismo , Concentração de Íons de Hidrogênio , Macrófagos/metabolismo , Higiene Bucal , Animais , Biomarcadores , Assistência Odontológica , Placa Dentária , Endotoxinas/efeitos adversos , Endotoxinas/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Camundongos , Fosforilação , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo , Raiz Dentária , Escovação Dentária
18.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202935

RESUMO

Osteoclastogenesis required for bone remodeling is also a key pathologic mechanism of inflammatory osteolysis being controlled by paracrine factors released from dying cells. The secretome of irradiated, dying peripheral blood mononuclear cells (PBMCs) has a major impact on the differentiation of myeloid cells into dendritic cells, and macrophage polarization. The impact on osteoclastogenesis, however, has not been reported. For this aim, we used murine bone marrow macrophages exposed to RANKL and M-CSF to initiate osteoclastogenesis, with and without the secretome obtained from γ-irradiated PBMCs. We reported that the secretome significantly enhanced in vitro osteoclastogenesis as determined by means of histochemical staining of the tartrate-resistant acid phosphatase (TRAP), as well as the expression of the respective target genes, including TRAP and cathepsin K. Considering that TGF-ß enhanced osteoclastogenesis, we confirmed the TGF-ß activity in the secretome with a bioassay that was based on the increased expression of IL11 in fibroblasts. Neutralizing TGF-ß by an antibody decreased the ability of the secretome to support osteoclastogenesis. These findings suggested that TGF-ß released by irradiated PBMCs could enhance the process of osteoclastogenesis in vitro.


Assuntos
Antígenos de Diferenciação/metabolismo , Diferenciação Celular/efeitos da radiação , Raios gama , Leucócitos Mononucleares/metabolismo , Osteoclastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ligante RANK/farmacologia
19.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076376

RESUMO

Solid platelet-rich fibrin (PRF) is produced with centrifugation tubes designed to accelerate clotting. Thus, activated platelets may accumulate within the fibrin-rich extracellular matrix even before centrifugation is initiated. It can thus be assumed that platelets and their growth factors such as transforming growth factor-ß (TGF-ß) are trapped within PRF independent of their relative centrifugal force (RCF), the gravitation or g-force. To test this assumption, we prepared PRF membranes with tubes where clotting is activated by a silicone-coated interior. Tubes underwent 210 g, 650 g and 1500 g for 12 min in a horizontal centrifuge. The respective PRF membranes, either in total or separated into a platelet-poor plasma and buffy coat fraction, were subjected to repeated freeze-thawing to prepare lysates. Gingival fibroblasts were exposed to the PRF lysates to provoke the expression of TGF-ß target genes. We show here that the expression of interleukin 11 (IL11) and NADPH oxidase 4 (NOX4), and Smad2/3 signaling were similarly activated by all lysates when normalized to the size of the PRF membranes. Notably, platelet-poor plasma had significantly less TGF-ß activity than the buffy coat fraction at both high-speed protocols. In contrast to our original assumption, the TGF-ß activity in PRF lysates produced using horizontal centrifugation follows a gradient with increasing concentration from the platelet-poor plasma towards the buffy coat layer.


Assuntos
Buffy Coat/metabolismo , Fibroblastos/efeitos dos fármacos , Membranas Artificiais , Fibrina Rica em Plaquetas/química , Fator de Crescimento Transformador beta/farmacologia , Coagulação Sanguínea , Células Cultivadas , Centrifugação/métodos , Fibroblastos/metabolismo , Gengiva/citologia , Gravitação , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Silicones/química , Proteínas Smad/genética , Proteínas Smad/metabolismo
20.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927851

RESUMO

Collagen membranes commonly used in guided bone regeneration are supposed to actively influence tissue regeneration and are not exclusively serving as passive barriers shielding away the soft tissue. The molecular mechanisms by which collagen membranes might affect tissue regeneration might involve the activation of transforming growth factor beta (TGF-ß) signaling pathways. Here, we determined the TGF-ß activity of supernatants and proteolytic lysates of five commercially available collagen membranes. The expression of TGF-ß target genes interleukin 11 (IL11), NADPH oxidase 4 (NOX4), and proteoglycan 4 (PRG4) was evaluated by reverse transcriptase polymerase chain reaction and IL11 immunoassay in gingival fibroblasts. TGF-ß signaling activation was further assessed by blocking the TGF-ß receptor I kinase, a TGF-ß neutralizing antibody, and showing the nuclear localization of phosphorylated Smad3 and total Smad2/3. We could identify two collagen membranes whose supernatants and lysates caused a robust increase of TGF-ß receptor I kinase-dependent expression of IL11 in gingival fibroblasts. Moreover, the supernatant of a particular one membrane caused the nuclear localization of phosphorylated Smad3 and Smad2/3 in the fibroblasts. These results strengthen the evidence that some collagen membranes possess an intrinsic TGF-ß activity that might actively influence the process of guided bone regeneration.


Assuntos
Colágeno , Membranas Artificiais , Fator de Crescimento Transformador beta , Colagenases , Odontologia , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA