Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 39(20): 6012-21, 2000 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-10821673

RESUMO

To gain insight into intramolecular carbohydrate-protein interactions at the molecular level, the solution structure of differently deglycosylated variants of the alpha-subunit of human chorionic gonadotropin have been studied by NMR spectroscopy. Significant differences in chemical shifts and NOE intensities were observed for amino acid residues close to the carbohydrate chain at Asn78 upon deglycosylation beyond Asn78-bound GlcNAc. As no straightforward strategy is available for the calculation of the NMR structure of intact glycoproteins, a suitable computational protocol had to be developed. To this end, the X-PLOR carbohydrate force field designed for structure refinement was extended and modified. Furthermore, a computational strategy was devised to facilitate successful protein folding in the presence of extended glycans during the simulation. The values for phi and psi dihedral angles of the glycosidic linkages of the oligosaccharide core fragments GlcNAc2(beta1-4)GlcNAc1 and Man3(beta1-4)GlcNAc2 are restricted to a limited range of the broad conformational energy minima accessible for free glycans. This demonstrates that the protein core affects the dynamic behavior of the glycan at Asn78 by steric hindrance. Reciprocally, the NMR structures indicate that the glycan at Asn78 affects the stability of the protein core. The backbone angular order parameters and displacement data of the generated conformers display especially for the beta-turn 20-23 a decreased structural order upon splitting off the glycan beyond the Asn78-bound GlcNAc. In particular, the Asn-bound GlcNAc shields the protein surface from the hydrophilic environment through interaction with predominantly hydrophobic amino acid residues located in both twisted beta-hairpins consisting of residues 10-28 and 59-84.


Assuntos
Gonadotropina Coriônica/química , Polissacarídeos/química , Acetilglucosamina/química , Configuração de Carboidratos , Sequência de Carboidratos , Glicoproteínas/química , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Soluções , Relação Estrutura-Atividade
2.
Eur J Biochem ; 260(2): 490-8, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10095786

RESUMO

The three-dimensional solution structure of the alpha-subunit in the alpha, beta heterodimeric human chorionic gonadotropin (hCG), deglycosylated with endo-beta-N-acetylglucosaminidase-B (dg-alpha hCG), was determined using 2D homonuclear and 2D heteronuclear 1H, 13C NMR spectroscopy at natural abundance in conjunction with the program package XPLOR. The distance geometry/simulated annealing protocol was modified to allow for the efficient modelling of the cystine knot motif present in alpha hCG. The protein structure was modelled with 620 interproton distance restraints and the GlcNAc residue linked to Asn78 was modelled with 30 protein-carbohydrate and 3 intraresidual NOEs. The solution structure of dg-alpha hCG is represented by an ensemble of 27 structures. In comparison to the crystal structure of the dimer, the solution structure of free dg-alpha hCG exhibits: (a) an increased structural disorder (residues 33-57); (b) a different backbone conformation near Val76 and Glu77; and (c) a larger flexibility. These differences are caused by the absence of the interactions with the beta-subunit. Consequently, in free dg-alpha hCG, compared to the intact dimer, the two hairpin loops 20-23 and 70-74 are arranged differently with respect to each other. The beta-GlcNAc(78) is tightly associated with the hydrophobic protein-core in between the beta-hairpins. This conclusion is based on the NOEs from the axial H1, H3, H5 atoms and the N-acetyl protons of beta-GlcNAc(78) to the protein-core. The hydrophobic protein-core between the beta-hairpins is thereby shielded from the solvent.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/química , Conformação Proteica , Cristalografia por Raios X , Glutamina , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Soluções , Valina
3.
Biochemistry ; 38(7): 1951-6, 1999 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-10026278

RESUMO

The all-trans retinoic acid and 9-cis retinoic acid receptors (RAR and RXR, respectively) belong to a family of ligand inducible transcription factors, which exert their effect via binding to hormone response elements. Both are members of the class II sub-family of nuclear receptors, which bind DNA as dimers, on tandem repeats of a hexamer motif separated by a variable spacer. The variability in spacer length and the head-to-tail organization of the hormone response elements result in different protein-protein interactions in each of the complexes. We show that the zinc-coordinating loop regions of RXR and RAR DNA-binding domains exhibit dynamics on the millisecond to microsecond time scale. The highly dynamic second zinc finger of RXR constitutes the primary protein-protein interface in many nuclear receptor assemblies on DNA. Dynamics is also observed in the first and second zinc fingers of RAR, which are implicated in dimeric interactions with RXR on response elements with spacers of 5 base pairs and 1 base pair, respectively. The striking correspondence between the regions that exhibit conformational exchange and the dimer interfaces of the proteins complexed with DNA suggests a functional role for the dynamics. The observed flexibility may allow the proteins to adapt to various partners and with different orientations upon assembly on DNA. Furthermore, the more extensive dynamics observed for RXR may reflect the greater ability of this protein to modulate its interaction surface since it participates in a wide variety of receptor complexes.


Assuntos
Proteínas de Ligação a DNA/química , DNA/metabolismo , Receptores do Ácido Retinoico/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Termodinâmica , Fatores de Tempo , Fatores de Transcrição/metabolismo
4.
Structure ; 5(4): 521-32, 1997 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9115441

RESUMO

BACKGROUND: Research on high-alkaline proteases, such as serine protease PB92, has been largely inspired by their industrial application as protein-degrading components of washing powders. Serine protease PB92 is a member of the subtilase family of enzymes, which has been extensively studied. These studies have included exhaustive protein engineering investigations and X-ray crystallography, in order to provide insight into the mechanism and specificity of enzyme catalysis. Distortions have been observed in the substrate-binding region of subtilisin crystal structures, due to crystal contacts. In addition, the structural variability in the substrate-binding region of subtilisins is often attributed to flexibility. It was hoped that the solution structure of this enzyme would provide further details about the conformation of this key region and give new insights into the functional properties of these enzymes. RESULTS: The three-dimensional solution structure of the 269-residue (27 kDa) serine protease PB92 has been determined using distance and dihedral angle constraints derived from triple-resonance NMR data. The solution structure is represented by a family of 18 conformers which overlay onto the average structure with backbone and all-heavy-atom root mean square deviations (for the main body of the molecule) of 0.88 and 1.21 A, respectively. The family of structures contains a number of regions of relatively high conformational heterogeneity, including various segments that are involved in the formation of the substrate-binding site. The presence of flexibility within these segments has been established from NMR relaxation parameters and measurements of amide proton exchange rates. CONCLUSIONS: The solution structure of the serine protease PB92 presents a well defined global fold which is rigid with the exception of a restricted number of sites. Among the limited number of residues involved in significant internal mobility are those of two pockets, termed S1 and S4, within the substrate-binding site. The presence of flexibility within the binding site supports the proposed induced fit mechanism of substrate binding.


Assuntos
Bacillus/enzimologia , Dobramento de Proteína , Estrutura Secundária de Proteína , Subtilisinas/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Engenharia de Proteínas , Soluções , Subtilisinas/isolamento & purificação
5.
J Mol Biol ; 266(2): 400-23, 1997 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-9047372

RESUMO

Limits of NMR structure determination using multidimensional NMR spectroscopy, variable target function calculations and relaxation matrix analysis were explored using the model protein ribonuclease T1 (RNase T1). The enzyme consists of 104 amino acid residues and has a molecular mass of approximately 11 kDa. Primary experimental data comprise 1856 assigned NOE intensities, 493 3J coupling constants and 62 values of amid proton exchange rates. From these data, 2580 distance bounds, 168 allowed ranges for torsional angles and stereospecific assignments for 75% of beta-methylene protons as well as for 80% of diastereotopic methyl groups were derived. Whenever possible, the distance restraints were refined in a relaxation matrix analysis including amid proton exchange data for improvement of lower distance limits. Description of side-chain conformations were based on various models of motional averaging of 3J coupling constants. The final structure ensemble was selected from the starting ensemble comparing the global precision of structures with order parameters derived from 15N relaxation time measurements. Significant differences between the structure of RNase T1 in solution and in the crystal became apparent from a comparison of the two highly resolved structures.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Ribonuclease T1/química , Ribonuclease T1/metabolismo , Sítios de Ligação , Dissulfetos/química , Guanina/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Software , Soluções
6.
Biochemistry ; 33(18): 5481-92, 1994 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-8180170

RESUMO

A conformational analysis of the valine side chains of ribonuclease T1 (RNase T1) was performed using NMR spectroscopy, in particular homonuclear (1H, 1H and 13C, 13C) and heteronuclear (1H, 15N and 1H, 13C) vicinal spin-spin coupling constants as obtained from E.COSY-type NMR experiments. The coupling constants related to the chi 1 dihedral angle in valine, 3JH alpha H beta, 3JNH beta, 3JC'H beta, 3JH alpha C gamma 1, 3JH alpha C gamma 2, 3JC'C gamma 1, and 3JC'C gamma 2, were evaluated in a quantitative manner. The analysis of 3J data allowed for the stereospecific assignment of the valine methyl resonances. On the basis of various models for motional averaging of coupling constants, a fit of the torsion angles chi 1 to a set of the experimental 3J coupling constants (3JH alpha H beta, 3JNH beta, 3JC'H beta) was carried out. The resulting side-chain conformations were examined with respect to NOE distance informations. Single rotameric states emerged for Val16, Val67, Val79, and Val101, while conformational equilibria between staggered rotamers were found for Val33 and Val78. Using a different model approach, Val52 and Val89 are also likely to exhibit unimodal chi 1 angle distributions. The analysis was found to depend critically on the set of Karplus parameters used. Except for Val52 and Val78, the predominant rotamers obtained from 3J coupling informations agree with the conformation in the crystal structure of ribonuclease T1 (Martinez-Oyanedel et al., 1991).


Assuntos
Ribonuclease T1/química , Valina/química , Espectroscopia de Ressonância Magnética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA