Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(11): e0011695, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956181

RESUMO

BACKGROUND: Trichuris trichiura (whipworm) is one of the most prevalent soil transmitted helminths (STH) affecting 604-795 million people worldwide. Diagnostic tools that are affordable and rapid are required for detecting STH. Here, we assessed the performance of the near-infrared spectroscopy (NIRS) technique coupled with machine learning algorithms to detect Trichuris muris in faecal, blood, serum samples and non-invasively through the skin of mice. METHODOLOGY: We orally infected 10 mice with 30 T. muris eggs (low dose group), 10 mice with 200 eggs (high dose group) and 10 mice were used as the control group. Using the NIRS technique, we scanned faecal, serum, whole blood samples and mice non-invasively through their skin over a period of 6 weeks post infection. Using artificial neural networks (ANN) and spectra of faecal, serum, blood and non-invasive scans from one experiment, we developed 4 algorithms to differentiate infected from uninfected mice. These models were validated on mice from a second independent experiment. PRINCIPAL FINDINGS: NIRS and ANN differentiated mice into the three groups as early as 2 weeks post infection regardless of the sample used. These results correlated with those from concomitant serological and parasitological investigations. SIGNIFICANCE: To our knowledge, this is the first study to demonstrate the potential of NIRS as a diagnostic tool for human STH infections. The technique could be further developed for large scale surveillance of soil transmitted helminths in human populations.


Assuntos
Helmintíase , Helmintos , Tricuríase , Humanos , Animais , Camundongos , Trichuris , Espectroscopia de Luz Próxima ao Infravermelho , Tricuríase/epidemiologia , Helmintíase/epidemiologia , Solo/parasitologia , Algoritmos , Fezes/parasitologia
2.
PNAS Nexus ; 1(5): pgac272, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712329

RESUMO

To eliminate malaria, scalable tools that are rapid, affordable, and can detect patients with low parasitemia are required. Non-invasive diagnostic tools that are rapid, reagent-free, and affordable would also provide a justifiable platform for testing malaria in asymptomatic patients. However, non-invasive surveillance techniques for malaria remain a diagnostic gap. Here, we show near-infrared Plasmodium absorption peaks acquired non-invasively through the skin using a miniaturized hand-held near-infrared spectrometer. Using spectra from the ear, these absorption peaks and machine learning techniques enabled non-invasive detection of malaria-infected human subjects with varying parasitemia levels in less than 10 s.

3.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680052

RESUMO

The transmission of dengue (DENV) and Zika (ZIKV) has been continuously increasing worldwide. An efficient arbovirus surveillance system is critical to designing early-warning systems to increase preparedness of future outbreaks in endemic countries. The Near Infrared Spectroscopy (NIRS) is a promising high throughput technique to detect arbovirus infection in Ae. aegypti with remarkable advantages such as cost and time effectiveness, reagent-free, and non-invasive nature over existing molecular tools for similar purposes, enabling timely decision making through rapid detection of potential disease. Our aim was to determine whether NIRS can differentiate Ae. aegypti females infected with either ZIKV or DENV single infection, and those coinfected with ZIKV/DENV from uninfected ones. Using 200 Ae. aegypti females reared and infected in laboratory conditions, the training model differentiated mosquitoes into the four treatments with 100% accuracy. DENV-, ZIKV-, and ZIKV/DENV-coinfected mosquitoes that were used to validate the model could be correctly classified into their actual infection group with a predictive accuracy of 100%, 84%, and 80%, respectively. When compared with mosquitoes from the uninfected group, the three infected groups were predicted as belonging to the infected group with 100%, 97%, and 100% accuracy for DENV-infected, ZIKV-infected, and the co-infected group, respectively. Preliminary lab-based results are encouraging and indicate that NIRS should be tested in field settings to evaluate its potential role to monitor natural infection in field-caught mosquitoes.


Assuntos
Aedes , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Feminino , Infecção por Zika virus/epidemiologia , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA