RESUMO
BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disorder without effective medical treatment which is characterized by inflammation and fibrotic structures around the bile ducts. Biliary epithelial cells (cholangiocytes) are the target and potential disease drivers in PSC, yet little is known if cholangiocytes from PSC patients differ from non-PSC controls. To characterize cholangiocytes at early rather than end-stage disease, cholangiocyte organoids (COs) were derived from diseased bile ducts of PSC patients and compared to organoids generated from disease controls. METHODS: Cholangiocytes were obtained during endoscopic retrograde cholangiopancreatography (ERCP) brushing of diseased bile duct areas and expanded as organoids using previously established culture methods. Stable CO lines were analyzed for cell type identity, basic cholangiocyte function, and transcriptomic signature. RESULTS: We demonstrate that cholangiocytes, derived from the damaged area within the bile ducts of PSC patients, can be expanded in culture without displaying functional or genetic disease-related features. We further show that COs from patients who later were diagnosed with dysplasia exhibit higher expression of the cancer-associated genes PGC, FXYD2, MIR4435-2HG, and HES1. CONCLUSIONS: Our results demonstrate that PSC organoids are largely similar to control organoids after culture and highlight the significance of COs as a tool for regenerative medicine approaches as well as their potential for discovering new potential biomarkers for diagnosing cholangiocarcinoma.
Assuntos
Colangite Esclerosante , Perfilação da Expressão Gênica , Organoides , Humanos , Colangite Esclerosante/genética , Colangite Esclerosante/patologia , Organoides/metabolismo , Organoides/patologia , Perfilação da Expressão Gênica/métodos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Ductos Biliares/patologia , Análise de Célula Única/métodos , Transcriptoma , Masculino , FemininoRESUMO
BACKGROUND: People with primary sclerosing cholangitis (PSC) have a 20% lifetime risk of biliary tract cancer (BTC). Using whole-exome sequencing, we characterized genomic alterations in tissue samples from BTC with underlying PSC. METHODS: We extracted DNA from formalin-fixed, paraffin-embedded tumor and paired nontumor tissue from 52 resection or biopsy specimens from patients with PSC and BTC and performed whole-exome sequencing. Following copy number analysis, variant calling, and filtering, putative PSC-BTC-associated genes were assessed by pathway analyses and annotated to targeted cancer therapies. RESULTS: We identified 53 candidate cancer genes with a total of 123 nonsynonymous alterations passing filtering thresholds in 2 or more samples. Of the identified genes, 19% had not previously been implicated in BTC, including CNGA3, KRT28, and EFCAB5. Another subset comprised genes previously implicated in hepato-pancreato-biliary cancer, such as ARID2, ELF3, and PTPRD. Finally, we identified a subset of genes implicated in a wide range of cancers such as the tumor suppressor genes TP53, CDKN2A, SMAD4, and RNF43 and the oncogenes KRAS, ERBB2, and BRAF. Focal copy number variations were found in 51.9% of the samples. Alterations in potential actionable genes, including ERBB2, MDM2, and FGFR3 were identified and alterations in the RTK/RAS (p = 0.036), TP53 (p = 0.04), and PI3K (p = 0.043) pathways were significantly associated with reduced overall survival. CONCLUSIONS: In this exome-wide characterization of PSC-associated BTC, we delineated both PSC-specific and universal cancer genes. Our findings provide opportunities for a better understanding of the development of BTC in PSC and could be used as a platform to develop personalized treatment approaches.
Assuntos
Neoplasias do Sistema Biliar , Colangite Esclerosante , Sequenciamento do Exoma , Humanos , Colangite Esclerosante/genética , Colangite Esclerosante/complicações , Neoplasias do Sistema Biliar/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Variações do Número de Cópias de DNA , Genes Neoplásicos/genéticaRESUMO
Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Linfócitos T CD4-Positivos , Colangite Esclerosante , MicroRNAs , Polimorfismo de Nucleotídeo Único , Humanos , Colangite Esclerosante/genética , Colangite Esclerosante/patologia , Colangite Esclerosante/imunologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único/genética , Feminino , Predisposição Genética para Doença , Adulto , Pessoa de Meia-IdadeRESUMO
PURPOSE: A large proportion of Common variable immunodeficiency (CVID) patients has duodenal inflammation with increased intraepithelial lymphocytes (IEL) of unknown aetiology. The histologic similarities to celiac disease, lead to confusion regarding treatment (gluten-free diet) of these patients. We aimed to elucidate the role of epigenetic DNA methylation in the aetiology of duodenal inflammation in CVID and differentiate it from true celiac disease. METHODS: DNA was isolated from snap-frozen pieces of duodenal biopsies and analysed for differences in genome-wide epigenetic DNA methylation between CVID patients with increased IEL (CVID_IEL; n = 5) without IEL (CVID_N; n = 3), celiac disease (n = 3) and healthy controls (n = 3). RESULTS: The DNA methylation data of 5-methylcytosine in CpG sites separated CVID and celiac diseases from healthy controls. Differential methylation in promoters of genes were identified as potential novel mediators in CVID and celiac disease. There was limited overlap of methylation associated genes between CVID_IEL and Celiac disease. High frequency of differentially methylated CpG sites was detected in over 100 genes nearby transcription start site (TSS) in both CVID_IEL and celiac disease, compared to healthy controls. Differential methylation of genes involved in regulation of TNF/cytokine production were enriched in CVID_IEL, compared to healthy controls. CONCLUSION: This is the first study to reveal a role of epigenetic DNA methylation in the etiology of duodenal inflammation of CVID patients, distinguishing CVID_IEL from celiac disease. We identified potential biomarkers and therapeutic targets within gene promotors and in high-frequency differentially methylated CpG regions proximal to TSS in both CVID_IEL and celiac disease.
Assuntos
Doença Celíaca , Imunodeficiência de Variável Comum , Ilhas de CpG , Metilação de DNA , Duodeno , Epigênese Genética , Humanos , Imunodeficiência de Variável Comum/genética , Duodeno/metabolismo , Duodeno/patologia , Doença Celíaca/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Ilhas de CpG/genética , Regiões Promotoras Genéticas/genética , Linfócitos Intraepiteliais/imunologia , Adulto Jovem , Estudo de Associação Genômica Ampla , 5-Metilcitosina/metabolismoRESUMO
Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.
Assuntos
COVID-19 , Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Gravidade do Paciente , SARS-CoV-2RESUMO
BACKGROUND & AIMS: Cholangiocarcinoma (CCA), heterogeneous biliary tumours with dismal prognosis, lacks accurate early diagnostic methods especially important for individuals at high-risk (i.e. those with primary sclerosing cholangitis [PSC]). Here, we searched for protein biomarkers in serum extracellular vesicles (EVs). METHODS: EVs from patients with isolated PSC (n = 45), concomitant PSC-CCA (n = 44), PSC who developed CCA during follow-up (PSC to CCA; n = 25), CCAs from non-PSC aetiology (n = 56), and hepatocellular carcinoma (n = 34) and healthy individuals (n = 56) were characterised by mass spectrometry. Diagnostic biomarkers for PSC-CCA, non-PSC CCA, or CCAs regardless of aetiology (Pan-CCAs) were defined and validated by ELISA. Their expression was evaluated in CCA tumours at a single-cell level. Prognostic EV biomarkers for CCA were investigated. RESULTS: High-throughput proteomics of EVs identified diagnostic biomarkers for PSC-CCA, non-PSC CCA, or Pan-CCA, and for the differential diagnosis of intrahepatic CCA and hepatocellular carcinoma, which were cross-validated by ELISA using total serum. Machine learning-based algorithms disclosed CRP/FIBRINOGEN/FRIL for the diagnosis of PSC-CCA (local disease [LD]) vs. isolated PSC (AUC = 0.947; odds ratio [OR] =36.9) and, combined with carbohydrate antigen 19-9, overpowers carbohydrate antigen 19-9 alone. CRP/PIGR/VWF allowed the diagnosis of LD non-PSC CCAs vs. healthy individuals (AUC = 0.992; OR = 387.5). It is noteworthy that CRP/FRIL accurately diagnosed LD Pan-CCA (AUC = 0.941; OR = 89.4). Levels of CRP/FIBRINOGEN/FRIL/PIGR showed predictive capacity for CCA development in PSC before clinical evidence of malignancy. Multi-organ transcriptomic analysis revealed that serum EV biomarkers were mostly expressed in hepatobiliary tissues, and single-cell RNA sequencing and immunofluorescence analysis of CCA tumours showed their presence mainly in malignant cholangiocytes. Multivariable analysis unveiled EV prognostic biomarkers, with COMP/GNAI2/CFAI and ACTN1/MYCT1/PF4V associated negatively and positively with patients' survival, respectively. CONCLUSIONS: Serum EVs contain protein biomarkers for the prediction, early diagnosis, and prognostication of CCA that are detectable using total serum, representing a tumour cell-derived liquid biopsy tool for personalised medicine. IMPACT AND IMPLICATIONS: The accuracy of current imaging tests and circulating tumour biomarkers for cholangiocarcinoma (CCA) diagnosis is far from satisfactory. Most CCAs are considered sporadic, although up to 20% of patients with primary sclerosing cholangitis (PSC) develop CCA during their lifetime, constituting a major cause of PSC-related death. This international study has proposed protein-based and aetiology-related logistic models with predictive, diagnostic, or prognostic capacities by combining two to four circulating protein biomarkers, moving a step forward into personalised medicine. These novel liquid biopsy tools may allow the (i) easy and non-invasive diagnosis of sporadic CCAs, (ii) identification of patients with PSC with higher risk for CCA development, (iii) establishment of cost-effective surveillance programmes for the early detection of CCA in high-risk populations (e.g. PSC), and (iv) prognostic stratification of patients with CCA, which, altogether, may increase the number of cases eligible for potentially curative options or to receive more successful treatments, decreasing CCA-related mortality.
Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Colangite Esclerosante , Neoplasias Hepáticas , Humanos , Colangite Esclerosante/complicações , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/complicações , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , Biomarcadores Tumorais , Diagnóstico Precoce , Biópsia Líquida , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/complicações , Carboidratos , Proteínas NuclearesRESUMO
Primary sclerosing cholangitis (PSC) is a rare autoimmune bile duct disease that is strongly associated with immune-mediated disorders. In this study, we implemented multitrait joint analyses to genome-wide association summary statistics of PSC and numerous clinical and epidemiological traits to estimate the genetic contribution of each trait and genetic correlations between traits and to identify new lead PSC risk-associated loci. We identified seven new loci that have not been previously reported and one new independent lead variant in the previously reported locus. Functional annotation and fine-mapping nominated several potential susceptibility genes such as MANBA and IRF5. Network-based in silico drug efficacy screening provided candidate agents for further study of pharmacological effect in PSC.
Assuntos
Colangite Esclerosante , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Fatores Reguladores de Interferon/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United States of America (USA) (n = 24) and Norway (n = 30). First, environmental chemical- and metabolome-wide association studies were conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false discovery rate, FDR < 0.20) and 3143 metabolic features (FDR < 0.05) differed by site. Next, pathway analysis was performed to identify metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched (P < .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and pathways were integrated to derive exposure-effect correlation networks by site. These networks demonstrate the shared and differential chemical-metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients demonstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include glycan degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.
RESUMO
BACKGROUND: A substantial proportion of common variable immunodeficiency (CVID) patients has duodenal inflammation of largely unknown etiology. However, because of its histologic similarities with celiac disease, gluten sensitivity has been proposed as a potential mechanism. OBJECTIVE: We aimed to elucidate the role of the duodenal microenvironment in the pathogenesis of duodenal inflammation in CVID by investigating the transcriptional, proteomic, and microbial signatures of duodenal biopsy samples in CVID. METHODS: DNA, total RNA, and protein were isolated from snap-frozen pieces of duodenal biopsy samples from CVID (with and without duodenal inflammation), healthy controls, and patients with celiac disease (untreated). RNA sequencing, mass spectrometry-based proteomics, and 16S ribosomal DNA sequencing (bacteria) were then performed. RESULTS: CVID separated from controls in regulation of transcriptional response to lipopolysaccharide and cellular immune responses. These differences were independent of mucosal inflammation. Instead, CVID patients with duodenal inflammation displayed alterations in transcription of genes involved in response to viral infections. Four proteins were differently regulated between CVID patients and healthy controls-DBNL, TRMT11, GCHFR, and IGHA2-independent of duodenal inflammation. Despite similar histology, there were major differences in CVID with duodenal inflammation and celiac disease both at the RNA and protein level. No significant difference was observed in the bacterial gut microbial signature between CVID, celiac, and healthy controls. CONCLUSION: Our findings suggest the existence of altered functions of the duodenal epithelium, particularly in response to lipopolysaccharide and viruses. The latter finding was related to duodenal inflammation, suggesting that viruses, not gluten sensitivity, could be related to duodenal inflammation in CVID.
Assuntos
Doença Celíaca , Imunodeficiência de Variável Comum , Vírus , Humanos , Doença Celíaca/genética , Lipopolissacarídeos , Proteômica , Bactérias , Inflamação , Vírus/genética , RNARESUMO
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Assuntos
Colangite Esclerosante , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Colangite Esclerosante/tratamento farmacológico , Colangite Esclerosante/patologia , Fígado/patologia , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologiaRESUMO
Obesity and associated morbidities, metabolic associated fatty liver disease (MAFLD) included, constitute some of the largest public health threats worldwide. Body composition and related risk factors are known to be heritable and identification of their genetic determinants may aid in the development of better prevention and treatment strategies. Recently, large-scale whole-body MRI data has become available, providing more specific measures of body composition than anthropometrics such as body mass index. Here, we aimed to elucidate the genetic architecture of body composition, by conducting genome-wide association studies (GWAS) of these MRI-derived measures. We ran both univariate and multivariate GWAS on fourteen MRI-derived measurements of adipose and muscle tissue distribution, derived from scans from 33,588 White European UK Biobank participants (mean age of 64.5 years, 51.4% female). Through multivariate analysis, we discovered 100 loci with distributed effects across the body composition measures and 241 significant genes primarily involved in immune system functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both shared and specific genetic influences, with higher mean heritability for the MRI measures (h2 = .25 vs. .13, p = 1.8x10-7). We found substantial genetic correlations between the body composition measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat and type 2 diabetes (rg = .49, p = 2.7x10-22). These findings show that MRI-derived body composition measures complement conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting the central role of liver fat, and improving our knowledge of the genetic architecture of body composition and related diseases.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudo de Associação Genômica Ampla , Composição Corporal/genética , Fígado/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: The development of liver cirrhosis is usually an asymptomatic process until late stages when complications occur. The potential reversibility of the disease is dependent on early diagnosis of liver fibrosis and timely targeted treatment. Recently, the use of non-invasive tools has been suggested for screening of liver fibrosis, especially in subjects with risk factors for chronic liver disease. Nevertheless, large population-based studies with cost-effectiveness analyses are still lacking to support the widespread use of such tools. The aim of this study is to investigate whether non-invasive liver stiffness measurement in the general population is useful to identify subjects with asymptomatic, advanced chronic liver disease. METHODS: This study aims to include 30,000 subjects from eight European countries. Subjects from the general population aged ≥ 40 years without known liver disease will be invited to participate in the study either through phone calls/letters or through their primary care center. In the first study visit, subjects will undergo bloodwork as well as hepatic fat quantification and liver stiffness measurement (LSM) by vibration-controlled transient elastography. If LSM is ≥ 8 kPa and/or if ALT levels are ≥1.5 x upper limit of normal, subjects will be referred to hospital for further evaluation and consideration of liver biopsy. The primary outcome is the percentage of subjects with LSM ≥ 8kPa. In addition, a health economic evaluation will be performed to assess the cost-effectiveness and budget impact of such an intervention. The project is funded by the European Commission H2020 program. DISCUSSION: This study comes at an especially important time, as the burden of chronic liver diseases is expected to increase in the coming years. There is consequently an urgent need to change our current approach, from diagnosing the disease late when the impact of interventions may be limited to diagnosing the disease earlier, when the patient is asymptomatic and free of complications, and the disease potentially reversible. Ultimately, the LiverScreen study will serve as a basis from which diagnostic pathways can be developed and adapted to the specific socio-economic and healthcare conditions in each country. TRIAL REGISTRATION: This study is registered on Clinicaltrials.gov ( NCT03789825 ).
Assuntos
Técnicas de Imagem por Elasticidade , Cirrose Hepática , Programas de Rastreamento , Biópsia , Técnicas de Imagem por Elasticidade/métodos , Europa (Continente) , Humanos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Programas de Rastreamento/métodosRESUMO
Liver fibrosis and cirrhosis have limited therapeutic options and represent a serious unmet patient need. Recent use of single-cell RNA sequencing (scRNAseq) has identified enriched cell types infiltrating cirrhotic livers but without defining the microanatomical location of these lineages thoroughly. To assess whether fibrotic liver regions specifically harbor enriched cell types, we explored whether whole-tissue spatial transcriptomics combined with scRNAseq and gene deconvolution analysis could be used to localize cell types in cirrhotic explants of patients with end-stage liver disease (total n = 8; primary sclerosing cholangitis, n = 4; primary biliary cholangitis, n = 2, alcohol-related liver disease, n = 2). Spatial transcriptomics clearly identified tissue areas of distinct gene expression that strongly correlated with the total area (Spearman r = 0.97, p = 0.0004) and precise location (parenchyma, 87.9% mean congruency; range, 73.1%-97.1%; fibrosis, 68.5% mean congruency; range, 41.0%-91.7%) of liver regions classified as parenchymal or fibrotic by conventional histology. Deconvolution and enumeration of parenchymal and fibrotic gene content as measured by spatial transcriptomics into distinct cell states revealed significantly higher frequencies of ACTA2+ FABP4+ and COL3A1+ mesenchymal cells, IL17RA+ S100A8+ and FCER1G+ tissue monocytes, VCAM1+ SDC3+ Kupffer cells, CCL4+ CCL5+ KLRB1+ and GZMA+ IL17RA+ T cells and HLA-DR+, CD37+ CXCR4+ and IGHM+ IGHG+ B cells in fibrotic liver regions compared with parenchymal areas of cirrhotic explants. Conclusion: Our findings indicate that spatial transcriptomes of parenchymal and fibrotic liver regions express unique gene content within cirrhotic liver and demonstrate proof of concept that spatial transcriptomes combined with additional RNA sequencing methodologies can refine the localization of gene content and cell lineages in the search for antifibrotic targets.
Assuntos
Hepatopatias , Transcriptoma , Fibrose , Humanos , Cirrose Hepática/genética , Transcriptoma/genéticaRESUMO
Primary sclerosing cholangitis (PSC) is associated with altered microbiota of the gut and bile. Mucosal-associated invariant T (MAIT) cells, enriched in human liver, uniquely recognize microbial-derived metabolites. This study aimed to determine whether bile from patients with PSC contains antigens activating MAIT cells. Bile was collected at the time of liver transplantation from patients with PSC (n = 28). The bile samples were either directly incubated with peripheral blood mononuclear cells from healthy donors or with antigen-presenting cells followed by co-culture with peripheral blood mononuclear cells. MAIT cell activation was assessed by flow cytometry. An anti-MR1 antibody was used to determine whether the activation was major histocompatibility complex class I-related protein (MR1) restricted. Biliary microbiota profiles were generated using 16S rRNA amplicon sequencing, and the abundance of the bacterial gene ribD was predicted. Eight of 28 bile samples could activate MAIT cells. This activation was partly MR1-dependent in five of eight bile samples. Microbial DNA was detected in 15 of 28 bile samples, including the five bile samples leading to MR1-dependent activation. A higher abundance of the ribD gene expression in the group of bile samples that could activate MAIT cells was predicted on the basis of the 16S sequencing. In co-culture experiments, cholangiocytes could take up and present biliary antigens to MAIT cells. These findings suggest a pathophysiological pathway in PSC connecting the immune system and the microbiome.