Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Data ; 11(1): 18, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168085

RESUMO

The Baltic Sea is one of the largest brackish water environments on earth and is characterised by pronounced physicochemical gradients and seasonal dynamics. Although the Baltic Sea has a long history of microscopy-based plankton monitoring, DNA-based metabarcoding has so far mainly been limited to individual transect cruises or time-series of single stations. Here we report a dataset covering spatiotemporal variation in prokaryotic and eukaryotic microbial communities and physicochemical parameters. Within 13-months between January 2019 and February 2020, 341 water samples were collected at 22 stations during monthly cruises along the salinity gradient. Both salinity and seasonality are strongly reflected in the data. Since the dataset was generated with both metabarcoding and microscopy-based methods, it provides unique opportunities for both technical and ecological analyses, and is a valuable biodiversity reference for future studies, in the prospect of climate change.


Assuntos
Microbiota , Plâncton , Países Bálticos , Biodiversidade , Água do Mar
2.
Harmful Algae ; 129: 102496, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951606

RESUMO

The diatom Pseudo-nitzschia H. Peragallo is perhaps the most intensively researched genus of marine pennate diatoms, with respect to species diversity, life history strategies, toxigenicity, and biogeographical distribution. The global magnitude and consequences of harmful algal blooms (HABs) of Pseudo-nitzschia are particularly significant because of the high socioeconomic impacts and environmental and human health risks associated with the production of the neurotoxin domoic acid (DA) among populations of many (although not all) species. This has led to enhanced monitoring and mitigation strategies for toxigenic Pseudo-nitzschia blooms and their toxins in recent years. Nevertheless, human adaptive actions based on future scenarios of bloom dynamics and proposed shifts in biogeographical distribution under climate-change regimes have not been implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) program these issues were addressed with respect to past, current and anticipated future status of key HAB genera such as Pseudo-nitzschia and expected benefits of enhanced monitoring. Data on the distribution and frequency of Pseudo-nitzschia blooms in relation to DA occurrence and associated amnesic shellfish toxin (AST) events were evaluated in a contemporary and historical context over the past several decades from key northern CoCliME Case Study areas. The regional studies comprised the greater North Sea and adjacent Kattegat-Skagerrak and Norwegian Sea, eastern North Atlantic marginal seas and Arctic gateways, and the Baltic Sea. The first evidence of possible biogeographical expansion of Pseudo-nitzschia taxa into frontier eastern Arctic gateways was provided from DNA barcoding signatures. Key climate change indicators, such as salinity, temperature, and water-column stratification were identified as drivers of upwelling and advection related to the distribution of regional Pseudo-nitzschia blooms. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change indicators may play key roles in selecting for the occurrence and diversity of Pseudo-nitzschia species within the broader microeukaryote communities. Shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for high-magnitude Pseudo-nitzschia blooms, currently absent from this area. Ecological and socioeconomic impacts of Pseudo-nitzschia blooms are evaluated with reference to effects on fisheries and mariculture resources and coastal ecosystem function. Where feasible, effective adaptation strategies are proposed herein as emerging climate services for the northern CoCLiME region.


Assuntos
Diatomáceas , Humanos , Ecossistema , Oceanos e Mares , Proliferação Nociva de Algas , Fatores Socioeconômicos
3.
Toxins (Basel) ; 15(5)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37235362

RESUMO

In this paper, an LC-MS/MS method for the simultaneous identification and quantification of cyanotoxins with hydrophilic and lipophilic properties in edible bivalves is presented. The method includes 17 cyanotoxins comprising 13 microcystins (MCs), nodularin (NOD), anatoxin-a (ATX-a), homoanatoxin (h-ATX) and cylindrospermopsin (CYN). A benefit to the presented method is the possibility for the MS detection of MC-LR-[Dha7] and MC-LR-[Asp3] as separately identified and MS-resolved MRM signals, two congeners which were earlier detected together. The performance of the method was evaluated by in-house validation using spiked mussel samples in the quantification range of 3.12-200 µg/kg. The method was found to be linear over the full calibration range for all included cyanotoxins except CYN for which a quadratic regression was used. The method showed limitations for MC-LF (R2 = 0.94), MC-LA (R2 ≤ 0.98) and MC-LW (R2 ≤ 0.98). The recoveries for ATX-a, h-ATX, CYN, NOD, MC-LF and MC-LW were lower than desired (<70%), but stable. Despite the given limitations, the validation results showed that the method was specific and robust for the investigated parameters. The results demonstrate the suitability of the method to be applied as a reliable monitoring tool for the presented group of cyanotoxins, as well as highlight the compromises that need to be included if multi-toxin methods are to be used for the analysis of cyanotoxins with a broader range of chemical properties. Furthermore, the method was used to analyze 13 samples of mussels (Mytilus edulis) and oysters (Magallana gigas) collected in the 2020-2022 summers along the coast of Bohuslän (Sweden). A complementary qualitative analysis for the presence of cyanotoxins in phytoplankton samples collected from marine waters around southern Sweden was performed with the method. Nodularin was identified in all samples and quantified in bivalve samples in the range of 7-397 µg/kg. Toxins produced by cyanobacteria are not included in the European Union regulatory monitoring of bivalves; thus, the results presented in this study can be useful in providing the basis for future work including cyanotoxins within the frame of regulatory monitoring to increase seafood safety.


Assuntos
Mytilus edulis , Ostreidae , Animais , Cromatografia Líquida/métodos , Suécia , Espectrometria de Massas em Tandem/métodos , Toxinas de Cianobactérias , Microcistinas/análise , Alimentos Marinhos/análise
4.
Harmful Algae ; 119: 102320, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344192

RESUMO

This paper summarizes the research conducted by the partners of the EU co-funded CoCliME project to ascertain the ecological, human health and economic impacts of Ostreopsis (mainly O. cf. ovata) blooms in the NW Mediterranean coasts of France, Monaco and Spain. This knowledge is necessary to design strategies to prevent, mitigate and, if necessary, adapt to the impacts of these events in the future and in other regions. Ostreopsis proliferations in the Mediterranean have been related to massive mortalities of benthic organisms and to symptoms of respiratory and cutaneous irritation in humans. A six-year epidemiologic study in a Ostreopsis hot spot in Catalonia and the accumulated experience of the French Mediterranean National Ostreopsis Surveillance Network confirm the main effects of these blooms on human health in the NW Mediterranean. The impacts are associated to direct exposure to seawater with high Ostreopsis cell concentrations and to inhalation of aerosols containing unknown irritative chemicals produced under certain circumstances during the blooms. A series of mild acute symptoms, affecting the entire body as well as the ophthalmic, digestive, respiratory and dermatologic systems have been identified. A main remaining challenge is to ascertain the effects of the chronic exposure to toxic Ostreopsis blooms. Still, the mechanisms involved in the deletereous effects of Ostreopsis blooms are poorly understood. Characterizing the chemical nature of the harmful compounds synthesized by Ostreopsis as well as the role of the mucus by which cells attach to benthic surfaces, requires new technical approaches (e.g., metabolomics) and realistic and standardized ecotoxicology tests. It is also necessary to investigate how palytoxin analogues produced by O. cf. ovata could be transferred through the marine food webs, and to evaluate the real risk of seafood poisonings in the area. On the other hand, the implementation of beach monitoring and surveillance systems in the summer constitutes an effective strategy to prevent the impacts of Ostreopsis on human health. In spite of the confirmed noxious effects, a survey of tourists and residents in Nice and Monaco to ascertain the socioeconomic costs of Ostreopsis blooms indicated that the occurrence of these events and their impacts are poorly known by the general public. In relationship with a plausible near future increase of Ostreopsis blooms in the NW Mediterranean coast, this survey showed that a substantial part of the population might continue to go to the beaches during Ostreopsis proliferations and thus could be exposed to health risks. In contrast, some people would not visit the affected areas, with the potential subsequent negative impacts on coastal recreational and touristic activities. However, at this stage, it is too early to accurately assess all the economic impacts that a potentially increasing frequency and biogeographic expansion of the events might cause in the future.


Assuntos
Dinoflagellida , Toxinas Marinhas , Humanos , Toxinas Marinhas/toxicidade , Dinoflagellida/química , Água do Mar/química , Estações do Ano , Fatores Socioeconômicos
5.
Harmful Algae ; 119: 102335, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344194

RESUMO

The marine dinoflagellate Alexandrium Halim represents perhaps the most significant and intensively studied genus with respect to species diversity, life history strategies, toxigenicity, biogeographical distribution, and global magnitude and consequences harmful algal blooms (HABs). The socioeconomic impacts, environmental and human health risks, and mitigation strategies for toxigenic Alexandrium blooms have also been explored in recent years. Human adaptive actions based on future scenarios of bloom dynamics and shifts in biogeographical distribution under climate-change parameters remain under development and not yet implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) project these issues were addressed with respect to past, current and anticipated future status of key HAB genera and expected benefits of enhanced monitoring. Data on the distribution and frequency of Alexandrium blooms related to paralytic shellfish toxin (PST) events from key CoCliME Case Study areas, comprising the North Sea and adjacent Kattegat-Skagerrak, Norwegian Sea, and Baltic Sea, and eastern North Atlantic marginal seas, were evaluated in a contemporary and historical context over the past several decades. The first evidence of possible biogeographical expansion of Alexandrium taxa into eastern Arctic gateways was provided from DNA barcoding signatures. Various key climate change indicators, such as salinity, temperature, and water-column stratification, relevant to Alexandrium bloom initiation and development were identified. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change impact indicators may play key roles in selecting for the occurrence and diversity of Alexandrium species within the broader microeukaryote communities. For example, shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for increased Alexandrium blooms, currently absent from this area. Ecological and socioeconomic impacts of Alexandrium blooms and effects on fisheries and aquaculture resources and coastal ecosystem function are evaluated, and, where feasible, effective adaptation strategies are proposed herein as emerging climate services.


Assuntos
Mudança Climática , Dinoflagellida , Humanos , Ecossistema , Proliferação Nociva de Algas , Salinidade
6.
Harmful Algae ; 118: 102318, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195412

RESUMO

Epibenthic dinoflagellates occur globally and include many toxin-producing species of concern to human health and benthic ecosystem function. Such benthic harmful algal blooms (BHABs) have been well described from tropical and sub-tropical coastal environments, but assessments from north temperate waters, e.g., northern Europe, and polar regions are scarce. The present study addressed the biodiversity and distribution of potentially toxic epibenthic dinoflagellate populations along the west coast of Sweden (Kattegat-Skagerrak) by morphological and molecular criteria. Morphological analysis conducted by light- and electron-microscopy was then linked by DNA barcoding of the V4 region of 18S rRNA gene sequences to interpret taxonomic and phylogenetic relationships. The presence of two potentially toxigenic epibenthic dinoflagellates, Prorocentrum lima (Ehrenberg) F.Stein and Coolia monotis Meunier was confirmed, along with a description of their spatial and temporal distribution. For P. lima, one third of the cell abundance values exceeded official alarm thresholds for potentially toxic BHAB events (>1000 cells gr-1 of macroalgae fresh weight). The same species were recorded consecutively for two summers, but without significant temporal variation in cell densities. SEM analyses confirmed the presence of other benthic Prorocentrum species: P. fukuyoi complex, P. cf. foraminosum and P. cf. hoffmannianum. Analyses of the V4 region of the 18S rRNA gene also indicated the presence P. compressum, P. hoffmannianum, P. foraminosum, P. fukuyoi, and P. nanum. These findings provide the first biogeographical evidence of toxigenic benthic dinoflagellates along the west coast of Sweden, in the absence of ongoing monitoring to include epibenthic dinoflagellates. Harmful events due to the presence of Coolia at shellfish aquaculture sites along the Kattegat-Skagerrak are likely to be rather marginal because C. monotis is not known to be toxigenic. In any case, as a preliminary assessment, the results highlight the risk of diarrhetic shellfish poisoning (DSP) events caused by P. lima, which may affect the development and sustainability of shellfish aquaculture in the region.


Assuntos
Bivalves , Dinoflagellida , Animais , Dinoflagellida/genética , Ecossistema , Proliferação Nociva de Algas , Humanos , Filogenia
7.
Harmful Algae ; 118: 102291, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195413

RESUMO

Dense blooms of filamentous cyanobacteria are recurrent phenomena in the Baltic Sea, with occasional negative effects on the surrounding ecosystem, as well as on tourism, human health, aquaculture, and fisheries. Establishing a climate service is therefore suggested; including multi-method observations of cyanobacteria biomass, biodiversity, and biogeography, in correspondence to biotic and abiotic factors. Three different approaches were compared for determination of spatial and temporal variability and trends of the blooms; 1) microscopy-based long-term data, 2) satellite remote sensing, and 3) phycocyanin fluorescence mounted on a merchant vessel. Firstly, microscopy-based data on cyanobacteria biomass from the period 2000-2020 showed that the toxin producing genus Nodularia and non-toxic Aphanizomenon both had summer means of 15 µg C L-1, while Dolichospermum was less dominant with a mean of 8 µg C L-1. Some years also the Kattegat was affected by cyanobacteria blooms, likely transported here by ocean currents. Secondly, the satellite remote sensing time series for the period 2002-2020 indicated that near surface blooms were most frequent in the Northern Baltic Proper and that near surface blooms have increased in the Bothnian Sea, starting later in the season than in the Baltic Proper. The largest extents (i.e., total area covered) were observed in 2005, 2008, and 2018. Thirdly, phycocyanin fluorescence from a flow through sensor mounted on a merchant vessel was used as a proxy for cyanobacteria biomass and correlated to cyanobacteria biomass estimated by microscopy. However, the satellite remote sensing data on surface accumulations showed little resemblance to the data on cyanobacteria biomass based on water sampling and microscopy, interpreted as an effect of methods. Sensors on satellites mainly detect surface accumulations of cyanobacteria while the microscopy data was based on samples 0-10 m, thereby comprising a larger community. Data from satellite remote sensing of cyanobacteria was correlated to the phycocyanin fluorescence indicating that similar bio-optical properties are observed. Finally, results from a downscaled ocean climate model (NEMONordic) were used to produce future scenarios for temperature and salinity, which directly affects cyanobacteria blooms in the Baltic Sea, supposedly by increasing in abundance and change in species composition. Short-term forecasts can be used together with observations for early warning of cyanobacteria blooms, and we suggest an internationally coordinated cyanobacteria observation and warning system for the Baltic Sea area.


Assuntos
Cianobactérias , Ecossistema , Humanos , Ficocianina , Estações do Ano , Água
8.
Mol Ecol Resour ; 22(6): 2304-2318, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35437888

RESUMO

High-throughput sequencing-based analysis of microbial diversity has evolved vastly over the last decade. Currently, the go-to method for studying microbial eukaryotes is short-read metabarcoding of variable regions of the 18S rRNA gene with <500 bp amplicons. However, there is a growing interest in applying long-read sequencing of amplicons covering the rRNA operon for improving taxonomic resolution. For both methods, the choice of primers is crucial. It determines if community members are covered, if they can be identified at a satisfactory taxonomic level, and if the obtained community profile is representative. Here, we designed new primers targeting 18S and 28S rRNA based on 177,934 and 21,072 database sequences, respectively. The primers were evaluated in silico along with published primers on reference sequence databases and marine metagenomics data sets. We further evaluated a subset of the primers for short- and long-read sequencing on environmental samples in vitro and compared the obtained community profile with primer-unbiased metagenomic sequencing. Of the short-read pairs, a new V6-V8 pair and the V4_Balzano pair used with a simplified PCR protocol provided good results in silico and in vitro. Fewer differences were observed between the long-read primer pairs. The long-read amplicons and ITS1 alone provided higher taxonomic resolution than V4. Together, our results represent a reference and guide for selection of robust primers for research on and environmental monitoring of microbial eukaryotes.


Assuntos
Eucariotos , Óperon de RNAr , Primers do DNA/genética , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Óperon de RNAr/genética
9.
Harmful Algae ; 102: 101989, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33875185

RESUMO

Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD), has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudo-nitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena, producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only an ongoing status report but also provide a way to interpret causes and mechanisms of HABs.


Assuntos
Ecossistema , Proliferação Nociva de Algas , Animais , Cães , Europa (Continente) , Nodularia , Noruega , Oceanos e Mares , Suécia
10.
Ambio ; 50(1): 203-214, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32314265

RESUMO

Dense blooms of diazotrophic filamentous cyanobacteria are formed every summer in the Baltic Sea. We estimated their contribution to nitrogen fixation by combining two decades of cyanobacterial biovolume monitoring data with recently measured genera-specific nitrogen fixation rates. In the Bothnian Sea, estimated nitrogen fixation rates were 80 kt N year-1, which has doubled during recent decades and now exceeds external loading from rivers and atmospheric deposition of 69 kt year-1. The estimated contribution to the Baltic Proper was 399 kt N year-1, which agrees well with previous estimates using other approaches and is greater than the external input of 374 kt N year-1. Our approach can potentially be applied to continuously estimate nitrogen loads via nitrogen fixation. Those estimates are crucial for ecosystem adaptive management since internal nitrogen loading may counteract the positive effects of decreased external nutrient loading.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Países Bálticos , Ecossistema , Nitrogênio/análise , Água do Mar
11.
Artigo em Inglês | MEDLINE | ID: mdl-37359131

RESUMO

Global trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985-2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort. Varying and contrasting regional trends were driven by differences in bloom species, type and emergent impacts. Our findings suggest that intensified monitoring efforts associated with increased aquaculture production are responsible for the perceived increase in harmful algae events and that there is no empirical support for broad statements regarding increasing global trends. Instead, trends need to be considered regionally and at the species level.

12.
Sci Rep ; 10(1): 17666, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077730

RESUMO

Aquatic phytoplankton experience large fluctuations in environmental conditions during seasonal succession and across salinity gradients, but the impact of this variation on their diversity is poorly understood. We examined spatio-temporal variation in nano- and microphytoplankton (> 2 µm) community structure using almost two decades of light-microscope based monitoring data. The dataset encompasses 19 stations that span a salinity gradient from 2.8 to 35 along the Swedish coastline. Spatially, both regional and local phytoplankton diversity increased with broad-scale salinity variation. Diatoms dominated at high salinity and the proportion of cyanobacteria increased with decreasing salinity. Temporally, cell abundance peaked in winter-spring at high salinity but in summer at low salinity. This was likely due to large filamentous cyanobacteria blooms that occur in summer in low salinity areas, but which are absent in higher salinities. In contrast, phytoplankton local diversity peaked in spring at low salinity but in fall and winter at high salinity. Whilst differences in seasonal variation in cell abundance were reasonably well-explained by variation in salinity and nutrient availability, variation in local-scale phytoplankton diversity was poorly predicted by environmental variables. Overall, we provide insights into the causes of spatio-temporal variation in coastal phytoplankton community structure while also identifying knowledge gaps.

13.
Harmful Algae ; 91: 101632, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057342

RESUMO

There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends.


Assuntos
Proliferação Nociva de Algas , Água do Mar , Mudança Climática , Humanos , Concentração de Íons de Hidrogênio , Fitoplâncton
14.
Harmful Algae ; 91: 101685, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057344

RESUMO

Almost every summer, dense blooms of filamentous cyanobacteria are formed in the Baltic Sea. These blooms may cause problems for tourism and ecosystem services, where surface accumulations and beach fouling are commonly occurring. Future changes in environmental drivers, including climate change and other anthropogenic disturbances, may further enhance these problems. By compiling monitoring data from countries adjacent to the Baltic Sea, we present spatial and temporal genus-specific distribution of diazotrophic filamentous cyanobacteria (Nostocales) during four decades (1979-2017). While the summer surface salinity decreased with a half up to one unit, the surface temperature in July-August increased with 2-3 °C in most sub-basins of the Baltic Sea, during the time period. The biovolumes of the toxic Nodularia spumigena did not change in any of the sub-basins during the period. On the other hand, the biovolume of the non-toxic Aphanizomenon sp. and the potentially toxic Dolichospermum spp. increased in the northern parts of the Baltic Sea, along with the decreased salinity and elevated temperatures, but Aphanizomenon sp. decreased in the southern parts despite decreased salinity and increased temperatures. These contradictory changes in biovolume of Aphanizomenon sp. between the northern and southern parts of the Baltic Sea may be due to basin-specific effects of the changed environmental conditions, or can be related to local adaptation by sub-populations of the genera. Overall, this comprehensive dataset presents insights to genus-specific bloom dynamics by potentially harmful diazotrophic filamentous cyanobacteria in the Baltic Sea.


Assuntos
Cianobactérias , Ecossistema , Países Bálticos , Nodularia
15.
Curr Biol ; 29(12): R564-R565, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31211972

RESUMO

Bioluminescent dinoflagellates grow at one third the rate of their competitors of equivalent size, such as diatoms [1]. Despite this disadvantage, dinoflagellates successfully persist within phytoplankton communities and even form large blooms during favourable conditions. One explanation for this paradox is that bioluminescence acts as a defence that reduces losses to zooplankton grazers, such as copepods [2,3]. Lindström et al.[4] found that the dinoflagellate Lingulodinium polyedra (F.Stein) J.D.Dodge increase their bioluminescence in response to copepodamides [5], polar lipids exuded by copepod grazers, allowing for a brighter flash when bioluminescent capacity is stimulated. Here, we show that copepodamide-induced bioluminescence in L. polyedra causes a marked shift in the grazing preference of the copepod Acartia tonsa Dana. L. polyedra goes from being the preferred prey when non-bioluminescent to near complete rejection when pre-treated with copepodamides to induce a higher bioluminescent capacity. High-speed and low-light-sensitive videos show how L. polyedra cells flash upon contact with the copepod and are subsequently rejected, seemingly unharmed (Videos S1 and S2). Instead, A. tonsa shows compensatory feeding on the alternative prey.


Assuntos
Adaptação Biológica , Copépodes/fisiologia , Dinoflagellida/fisiologia , Metabolismo dos Lipídeos , Luminescência , Animais , Dinoflagellida/efeitos dos fármacos , Comportamento Alimentar , Cadeia Alimentar
16.
Sci Total Environ ; 601-602: 1060-1074, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599362

RESUMO

A novel approach, termed Summed Positive Peaks (SPP), is proposed for determining phytoplankton abundances (Chlorophyll-a or Chl-a) and surface phytoplankton bloom extent in the optically complex Baltic Sea. The SPP approach is established on the basis of a baseline subtraction method using Rayleigh corrected top-of-atmosphere data from the Medium Resolution Imaging Spectrometer (MERIS) measurements. It calculates the reflectance differences between phytoplankton related signals observed in the MERIS red and near infrared (NIR) bands, such as sun-induced chlorophyll fluorescence (SICF) and the backscattering at 709nm, and considers the summation of the positive line heights for estimating Chl-a concentrations. The SPP algorithm is calibrated against near coincident in situ data collected from three types of phytoplankton dominant waters encountered in the Baltic Sea during 2010 (N=379). The validation results show that the algorithm is capable of retrieving Chl-a concentrations ranging from 0.5 to 3mgm-3, with an RMSE of 0.24mgm-3 (R2=0.69, N=264). Additionally, the comparison results with several Chl-a algorithms demonstrates the robustness of the SPP approach and its sensitivity to low to medium biomass waters. Based on the red and NIR reflectance features, a flagging method is also proposed to distinguish intensive surface phytoplankton blooms from the background water.


Assuntos
Clorofila/análise , Monitoramento Ambiental/métodos , Fitoplâncton/crescimento & desenvolvimento , Clorofila A , Tecnologia de Sensoriamento Remoto
17.
Front Microbiol ; 7: 679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242706

RESUMO

Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 10(5) sequences/sample) of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.

18.
Harmful Algae ; 49: 68-93, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27011761

RESUMO

Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB "best practices" manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic barriers, how stratification may enhance or diminish HAB events, how trace nutrients (metals, vitamins) influence cell toxicity, and how grazing pressures may leverage, or mitigate HAB development. There is an absence of high quality time-series data in most regions currently experiencing HAB outbreaks, and little if any data from regions expected to develop HAB events in the future. A subset of observer sites is recommended to help develop stronger linkages among global, national, and regional climate change and HAB observation programs, providing fundamental datasets for investigating global changes in the prevalence of harmful algal blooms. Forecasting changes in HAB patterns over the next few decades will depend critically upon considering harmful algal blooms within the competitive context of plankton communities, and linking these insights to ecosystem, oceanographic and climate models. From a broader perspective, the nexus of HAB science and the social sciences of harmful algal blooms is inadequate and prevents quantitative assessment of impacts of future HAB changes on human well-being. These and other fundamental changes in HAB research will be necessary if HAB science is to obtain compelling evidence that climate change has caused alterations in HAB distributions, prevalence or character, and to develop the theoretical, experimental, and empirical evidence explaining the mechanisms underpinning these ecological shifts.

19.
Anal Chim Acta ; 786: 1-7, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23790284

RESUMO

Current anthropogenic carbon dioxide emissions generate besides global warming unprecedented acidification rates of the oceans. Recent evidence indicates the possibility that ocean acidification and low oceanic pH may be a major reason for several mass extinctions in the past. However, a major bottleneck for research on ocean acidification is long-term monitoring and the collection of consistent high-resolution pH measurements. This study presents a low-power (<1 W) small sample volume (25 µL) semiconductor based fluorescence method for real-time ship-board pH measurements at high temporal and spatial resolution (approximately 15 s and 100 m between samples). A 405 nm light emitting diode and the blue and green channels from a digital camera was used for swift detection of fluorescence from the pH sensitive dye 6,8-Dihydroxypyrene-1,3-disulfonic acid in real-time. Main principles were demonstrated by automated continuous measurements of pH in the surface water across the Baltic Sea and the Kattegat region with a large range in salinity (~3-30) and temperature (~0-25°C). Ship-board precision of salinity and temperature adjusted pH measurements were estimated as low as 0.0001 pH units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA